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Abstract

Reliability analysis is a design-time activity. The goal
is to anticipate problems and suggest product improve-
ments before manufacturing and delivery. Enhanced
quality and customer satisfaction along with reduced
life-cycle costs are the motivation. Analysts employ
models of physical systems to determine points of vul-
nerability and failure probabilities. Unfortunately, the
models of complex systems—those with dependency
cycles among components—necessarily lead to ambigu-
ous analyses. Below, the source of these ambiguities is
identified and some AI and expert systems techniques
are suggested to help deal with them.

Introduction

Reliability analysis is an activity that determines, from
a product design, how resistant the product is to fail-
ure. The standard input to the analysis is a structure
called a fault tree. The fault tree is equivalent to a
boolean expression that represents the system failure
condition in terms of component failures.

The outputs of a reliability analysis are the probabil-
ity of system failure, calculated from the fault tree and
probabilities of component failures, and an enumera-
tion of critical sets. A critical set is a set of components
where (1) the system necessarily fails if all elements in
the set fail and (2) no proper subset satisfies the first
condition. Knowledge of small critical sets is important
because they represent acute vulnerabilities to outside
influences, e.g., battle damage, not accounted for by
the component failure probabilities.

Two serious problems face this popular and ubiqui-
tous approach to reliability analysis. The first is de-
riving the proper fault tree from the product design.
The second is computational complexity—the number
of critical sets can grow exponentially with the size of
the fault tree. This paper deals with the first problem
and suggests ways that AI technology may be useful for
its resolution. It is a companion to Barnett and Verma

[1994] where modeling and computational methods for
reliability analyses are described.

The interested reader should consult the classics,
Amstadter [1971] and Barlow, Fussell, and Singpur-
walla [1975], for more information on the foundations
of reliability analysis. Current approaches are de-
scribed in the IEEE Transactions on Reliability Anal-
ysis and in the proceedings and tutorial notes of the
yearly Annual Reliability and Maintainability Sympo-
sium.

Summary
The following sections, Simple Dependencies and De-
pendency Cycles, introduce the Functional Depen-
dency Graph (FDG), a structure to express intra-
system dependencies. They show, through examples,
that analyses of systems with dependency cycles are
not exact. The next sections, Fixed Points & Mod-
els, Representational Adequacy, and Limit Cycles, de-
scribe, in more detail, the nature of the system models
used for reliability analyses and identify the sources of
ambiguity. The problems encountered in this appli-
cation are related to the problems encountered when
control systems have multiple steady-state possibili-
ties. It is also shown that the size of the represen-
tational structures involved preclude straightforward
manual trial-and-error problem-solving strategies.

The final sections, A Better Approach and Open
Problems, suggest the use of AI and expert systems
techniques to construct analytic aids to improve the
modeling task and help select the analysis that best
reflects the actual system and the designer’s intent.

Simple Dependencies
In simple system designs, dependencies can be repre-
sented by a partial order. For example, a flash light is
operational if the bulb works and the bulb functions
only if the battery and switch are operational. It is
trivial to form a correct fault tree for these systems.
However, most real-world designs display dependency
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cycles among system functionalities, e.g., power from
a motor depends on oil pressure, but oil pressure de-
pends on the oil pump which needs engine power to
work. Deriving a fault tree when dependency cycles
exist is a tricky business and a source of many subtle
errors in reliability analysis.

Figure 1 is an example of an electronic system that
has no dependency cycles. It is represented by a Func-
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Figure 1: A redundant circuit without cycles.

tional Dependency Graph (FDG), a structure that ex-
presses operability conditions and system dependen-
cies, as described by Barnett and Verma (1994). The
edges represent functionalities and the nodes represent
dependencies. Both are labeled. In this example, the
bi are power, the φi are non-redundant computational
capabilities, and f is the redundant computational ca-
pability that is this system’s design intent.

Each node is annotated with a boolean expression
that describes how the functionality labeling edges
leaving the node, depends on components in the system
and the functionalities labeling the edges entering the
node. The βi are batteries, the Φi are computational
devices, and the κn are shorthand for expressions that
evaluate true if n inputs are true: κ1 = x1 ∨ x2 and
κ2 = x1x2 for a node with inputs x1 and x2, while

κ1 = x1 ∨ x2 ∨ x3

κ2 = x1x2 ∨ x1x3 ∨ x2x3

κ3 = x1x2x3

for a node with inputs x1, x2, and x3.
Thus, a boolean equation, where true denotes fail-

ure, can be written for each functionality directly from
the FDG. The failure conditions for the example sys-
tem are expressed by

f = κ2(φ1, φ2, φ3)
φ1 = Φ1 ∨ κ2(b1, b2)
φ2 = Φ2 ∨ κ2(b1, b3)
φ3 = Φ3 ∨ κ2(b2, b3)

b1 = β1

b2 = β2

b3 = β3

and these equations are solved by simple substitution.
Hence, the failure condition for f , expressed in terms
of component failures, is

f = (Φ1 ∨ β1β2)(Φ2 ∨ β1β3)
∨ (Φ1 ∨ β1β2)(Φ3 ∨ β2β3)

∨ (Φ2 ∨ β1β3)(Φ3 ∨ β2β3)

and the probability of systemic failure, p(f), can be ex-
pressed in terms of p(Φi), p(βi), and some conditional
probabilities. The and/or expression for f is equivalent
to its fault tree.

The critical sets (called minimum cutsets by some)
are the terms that result when the failure condition
is expressed in conjunctive normal form (CNF) and
reduced by subsumption. In this case,

f = Φ1Φ2 ∨ Φ1Φ3 ∨ Φ2Φ3 ∨ β1β3Φ1

∨ β2β3Φ1 ∨ β1β2Φ2 ∨ β2β3Φ2

∨ β1β2Φ3 ∨ β1β3Φ3 ∨ β1β2β3

is the reduced CNF representation and the ten critical
sets are {Φ1, Φ2}, . . . , {β1, β2, β3}.

Dependency Cycles

The same strategy is used to analyze a system with
dependency cycles: represent the system by an FDG,
extract the associated equation set, solve the equations
to find fault trees, then determine critical sets and fail-
ure probabilities. Consider the FDG shown in Figure 2.
In this case there are dependency cycles. X, Y , and
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Figure 2: An FDG with cycles.

Z are generators and the associated functionalities, x,
y, and z, are raw power. A and C are regulators so
the functionalities a and c are smoothed power. The
functionality a (respectively c) is available when the
regulator A (respectively C), along with at least one
input power source, is available. The functionality b is
mission power. It depends on the correct functioning
of combiner B and the availability of two of its three

13



input power sources (a, c, and y), at least one of which
must be smoothed.

The boolean failure conditions associated with the
functionalities in this example are

a = A ∨ κ2(b, x) b = B ∨ κ2(a, y, c) c = C ∨ κ2(b, z)
x = X y = Y z = Z.

and the general solution to these equations is

a = A ∨BX ∨ CXY ∨ (C ∨ Y ∨ Z)Xθ
b = B ∨AC ∨AY ∨ CY

∨ (AZ ∨ CX ∨XY ∨ Y Z ∨XZ)θ
c = C ∨BZ ∨AY Z ∨ (A ∨ Y ∨X)Zθ

where θ is a free boolean parameter, i.e., any boolean
expression can be substituted for θ and the above will
be a set of consistent simultaneous solutions to the
original equations. Thus, the solution cannot be ex-
pressed in terms of just component failures.

This situation is unfortunate because, without fixing
the value of θ, neither critical-set enumerations nor sys-
tem failure probabilities are available. Rewrite these
equations more abstractly as v = ξv ∨ µvθ, where v is
either a, b, or c, and it follows that

p(v) = p(ξv ∨ µvθ)
= p(ξv) + p(ξvµv|θ) · p(θ).

Clearly, p(v) cannot be calculated without p(θ). Fur-
ther, unless θ and the literals are marginally indepen-
dent, some conditional probabilities will be needed as
well. All that can be inferred at this point is that

p(ξv) ≤ p(v) ≤ p(ξv ∨ µv),

a range that may be too large to be informative. The
left and right end points of this interval correspond,
respectively, to θ = false and θ = true.

Computational techniques to solve simultaneous sets
of functional equations, based on methods similar to
those developed by Dionne, Mays, and Oles [1992], are
described in Barnett and Verma [1994].

Fixed Points & Models
The simultaneous solutions to a set of boolean equa-
tions are called its fixed points. A fixed point is a value
for each variable such that the result of substitution re-
gurgitates the original forms. Consider a simple case
with two equations, x = α + βy and y = γ + δx. The
fixed points are all of the form x = α + βγ + βδπ and
y = γ + αδ + βδπ, where π is arbitrary, because

x = α + βy y = γ + δx
= α + β(γ + αδ + βδπ) = γ + δ(α + βγ + βδπ)
= α + βγ + βδπ = γ + αδ + βδπ

In the example of the previous section, the fixed points
are the solution triples parameterized by θ. In general,
the fixed points of simultaneous boolean equations are
a parameterized family with one or more independent
free boolean parameters.

Each fixed point represents a correct model of the
system in some possible world that is consistent with
its FDG. Figure 3 shows the most primitive non-trivial
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Figure 3: Engine with two cylinders.

FDG that has a dependency cycle.1 Its fixed points are

a = A + B + θ b = A + B + θ.

Thus, three interesting cases occur: θ = true, θ =
false, and θ is something else. Each case represents a
valid system model. For the sake of this discussion, let
us assume that A and B are cylinders in a combustion
engine and that each depends on the other’s proper
performance to run smoothly.

When θ = true, a = b = true; in other words, the
system is in a failed state 100% of the time. This is a
valid model because it is the state of the system when
it is stopped—without a mechanism such as a starter
motor there is no way to change this fact. On the
other hand, when θ = false, a = b = A + B and
each cylinder functions smoothly as long as both are
operational. This is a valid model when the motor is
initially operating. The system will continue to operate
as long as neither cylinder experiences a break down.

The third possibility is that θ be neither true or false,
e.g., θ = S. In this case, a = b = A + B + S and
the system is equivalent to one with the augmented
FDG, shown in Figure 4, where the fixed points are
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Figure 4: Augmented FDG.

a = b = A + B + S + π, and π = false is chosen.
The augmented system corresponds to one with an ad-
ditional mechanism, say, a starter motor. Now the

1The most primitive example is a functionality that de-
pends only on itself in a system with no components. In
this case, the equation is f = f and the fixed points are
f = θ for an arbitrary θ.
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system can operate correctly from either an initial idle
or running state since it has an explicit mechanism to
affect state transitions.

All three of the choices for θ are logically consistent
with the original FDG: the augmented system is the
original with θ = S + π. The interesting difference is
that the minimum fixed point of the augmented system
can be used. Clearly, a system dependency, not present
in the original, has been uncovered and, just as clearly,
the modeling task would be better served if the derived
FDG were used in place of the original assuming that
it represents the actual intent of the system designers.

The set of fixed points that satisfy a set of boolean
equations form a lattice. Let fi = fi(θ1, . . . , θm) be
the functionalities in a system and the θj be the free
parameters that occur in their fixed points. Then

fi(θ1, . . . , θm) ⊂ fi(θ′1, . . . , θ
′
m)

p(fi(θ1, . . . , θm)) ≤ p(fi(θ′1, . . . , θ
′
m))

if θj ⊂ θ′j . (The relation “⊂” can be thought of as re-
ferring to area in a Venn diagram.) Clearly, θj = true
and θj = false lead, respectively, to upper and lower
bounds2 on the probabilities and area of the functional-
ities. Thus, these assignments are called, respectively,
the maximum and minimum fixed points.

It should be noted that the critical sets derived for
the minimum fixed point are failure sets3 for every
model consistent with the FDG. Thus, the failure con-
dition represented by the minimum fixed point is the
intersection of the failure conditions of all models con-
sistent with the FDG. Another way to say this is that
the minimum failure condition is the one structurally
implied by the FDG. Similarly, the failure condition
associated with the maximum fixed point is the union
of the failure condition of all models consistent with
the FDG.

Representational Adequacy

An important goal of reliability analysts is that their
analyses reflect all significant dependencies. Therefore,
the FDG derived from the product design must include
all necessary components and properly express inter-
dependencies. If an FDG does this, then the values
substituted into the fixed points for the free parameters
are necessarily functionality- and component-free. In
other words, the only reasonable substitutions for the
θj are the boolean constants true and false.

2This is so because functionality fixed points do not con-
tain any negated θj terms.

3A failure set is a set of components whose simultaneous
failure entails system failure. A minimum failure set is a
critical set.

In theory, this means that the designer/analyst can
examine the maximum and minimum solutions and
the critical-set enumeration they yield to see if either
agrees with his intuition about the system. If neither
is satisfying, the FDG is not an adequate model and
needs to be amended.

In practice, this is not a reasonable approach. The
table in Figure 5 summarizes some facts about four
typical systems that have been analyzed by the au-

Boolean Critical
Case Components Operators Sets
MCB 23 724 131
FCB 28 1992 479
HP 42 235 16,293
AB 58 259 548,754

Figure 5: Typical test-case complexity.

thor. As is apparent, the number of boolean operators
appearing in the fixed point expression of the main
system functionality is of the order of magnitude of
several hundred to several thousand. In addition, the
number of critical sets can be quite large. Thus, these
structure are seen to be too large to be well-understood
by manual inspection.

Limit Cycles
The control theory concept of limit cycles is a useful
metaphor to understand the fact that FDGs do not
have unique solutions. A limit cycle is a steady state
that a system enters from a given set of initial condi-
tions. It is called a “cycle” since the steady state may
be a regular tour of quasi-stable states. As an example,
consider a set of coupled vibrators. The steady states
of the system are various harmonics of some base fre-
quency. The steady state entered depends on the initial
state of the system. For some sets of initial conditions,
there are multiple high-probability possibilities.

Consider the two-cylinder engine example intro-
duced above. There are two steady states: (1) idle
and (2) rotating smoothly. Given initial conditions
expressed in “rpms” and smoothness, the engine will
either eventually halt or achieve smooth rotation.
Clearly, we cannot know which state is achieved un-
less the initial conditions and the transition function
are known. Since the FDG specifies neither, multiple
solutions necessarily appear.

The fixed points of the functionality equations cor-
respond to the possible limit cycles of the analyzed
system. Hence, without some additional information,
it is no more possible to recognize the proper system
failure condition than it is to predict its limit cycle.
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There is more to the metaphor of fixed points and
limit cycles than the fact that both admit multiple
solutions: multiplicity in both is a result of depen-
dency cycles (aka coupling) and both may require sev-
eral independent parameters to properly specify. The
cause of multiplicity is that components in a loop must
achieve a joint steady state (fixed point) that satisfies
mutual constraints and several choices are consistent
with these constraints.

The number of independent parameters necessary
to describe the possible steady states is a function of
the number of loops in the system description and the
strength of coupling among the loops. For example,
the system shown in Figure 2 has two loops, A ↔ B
and B ↔ C, however, only one parameter is necessary.

This author has been unable to find a computation-
ally efficient way to predict the minimum number of
independent free parameters necessary to represent the
fixed point of an FDG. The solution techniques intro-
duced in Barnett & Verma [1994] allow us to find the
valid fixed points, albeit, with more parameters than
necessary. However, while these parameters are inde-
pendent (the choice of boolean expression to substitute
for each can be arbitrary), they are not free (the choice
for some parameters can mask the effect of the choices
made for others). Resolution of such problems belongs
more to the fields of boolean algebra and physical sys-
tem modeling than it does to reliability analysis.

A Better Approach
What is needed is technology that helps the de-
signer/analyst to

1 Form an FDG from the system design, and

2 Select the fixed point that provides the best model
of the intended system.

These are co-problems because, fixed points other than
the minimum or maximum can occur only if there are
either inter- or intra-system dependencies not reflected
in the FDG. Further, several fixed points can be valid
descriptions of the same system in different situations.
This is no different than a control system designer re-
lying on different limit cycles in different situations. In
order to properly model multi-modal systems, it may
be necessary to use multiple FDGs. When this is de-
sired, another item must be added to our wish list: one
that helps the designer/analyst

3 Modify an existing FDG and/or select a different
fixed point when the system is used in a related but
different mode.

These aids are ideal applications for AI and expert sys-
tems techniques: models of the interactions of intricate

physical mechanism are necessary along with heuristic
knowledge to tame inherent computational complexity
and select acceptable approximations.

Further, this problem domain displays enough reg-
ularity to suggest many reasonable rules of thumb;
for example, the pervasive use of redundancy to pro-
mote reliability may suggest ways to factor FDGs into
smaller, more manageable units that are easier to un-
derstand and evaluate, i.e., identify groups of subsys-
tems that perform the same or similar function.

Another clue that suggests interesting factorizations
and reuse of heuristics, is knowing which components
are identical to one another. For example, the regu-
lators, A and C in Figure 2, are two instances of the
same component as are X and Y . Further, the usage
of A and C by B are identical so that we should expect
symmetry in the analysis between A coupled with X
and C coupled with Y . This is not obvious from the
FDG but might be inferred from the original design or
knowledge about the basic components included in the
design. A smart tool would need to draw these types of
inferences or at least be clever enough to inquire about
them when basic design symmetries are detected.

We saw above that the source of ambiguity in relia-
bility analyses is the presence of dependency cycles. A
good heuristic is to identify loops in the FDG and in-
teract with the designer/analyst to determine their in-
tended steady-state behavior. If necessary, additional
mechanisms—such as the starter motor appearing in
Figure 4 but not Figure 3—may need to be added to
model the intended operation of the loop elements.

In some instances, the mechanisms added to the
system description will not be physical components.
Rather, they might be symbols to represent design
assumptions. For example, instead of representing a
starter motor, S might represent assumptions about
the initial state of the system. If it does, p(S) would
represent the strength of belief that the system fails
to achieve an operational steady state because of the
initial state. This interpretation of the augmented sys-
tem depicted in Figure 4 is better than that of a starter
motor unless, the derivation of the FDG actually over-
looked an existing system component.

Open Problems

The approach outlined in the previous section is only
half-baked. Research results from several areas are nec-
essary to pursue the agenda that it entails. Symbolic
modeling of physical systems (qualitative physics) is
the current focus of a substantial research community.
Clearly, that work will provide valuable insights to our
endeavor. Many of the relevant results are chronicled
in the AI Journal and the Proceedings of the AAAI
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and IJCAI conferences of the last several years.
Another source of valuable results that address effi-

ciency and computability will be provided by research
in graph theory. In particular, the algorithms devel-
oped for compilers (e.g., loop detection and common
subexpression detection) and work with commodity
flow and other economical models will be useful.

Finally, the vast body of knowledge developed for
the analyses of control and feedback systems will be
useful. This may seem surprising since their mathe-
matics is very different from ours; they model continu-
ous worlds with differential equations while we model
discrete worlds with boolean equations. However, the
deep metaphor between multiple fixed points and mul-
tiple limit cycles suggests much commonality. After
all, both communities describe and model the same
sorts of systems.
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