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Probability theory offers a well understood language for describing uncer-
tainty and for drawing inferences from partial knowledge. Thus, its methods
are applicable to any task requiring inferences from incomplete information.
Typical applications include diagnosis, forecasting, and classification. How-
ever, computing with probability theory is not without its problems because
the size of a joint distribution grows exponentially with the number of vari-
ables. Therefore, it is impractical to elicit, store, and compute with an entire
distribution unless the domain is small.

One traditional approach to overcome complexity problems is to make
independence and uniformity assumptions. Independence assumptions per-
mit a joint distribution to be factored into a product of smaller marginal
distributions, while uniformity assumptions permit identical distributions to
be substituted for many of the marginals. These assumptions significantly
reduce computational requirements and facilitate data acquisition. On the
other hand, the resulting models may be over-simplified and can entail ques-
tionable conclusions.

Scientists working with probabilistic models are often forced to trade
fidelity to save computational resources. In applications such as image pro-
cessing there may be an enormous number of variables, e.g., pixel features. In
such cases, statistical inference is not practical without making simplifying
assumptions. A typical assumption is that the distribution of a pixel fea-
ture is determined by conditioning on just the features of neighboring pixels.
This is tantamount to assuming that features of distant pixels are indepen-
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dent. While this model may lead to less than perfect conclusions, it does
have the important property that some conclusions can be drawn within the
limitations of the available computational resources. In applications such as
medical diagnosis, the trade-off is different: the cost of questionable conclu-
sions can be so severe that fidelity must dominate. A ramification of this
priority is that, until recently, probabilistic methods were only applied to
limited medical domains.

This special issue addresses the trade-off between fidelity and computa-
tional resources in areas where probabilistic reasoning is applicable. With the
recent development of network-based approaches such as Bayesian networks,
chain graphs, influence diagrams, recursive models, and Markov networks,
wide ranges of choices between the two extremes have become available.
These approaches are based on the ability to exactly model the dependencies
required by the domain, while assuming independence, by default, whenever
it is consistent with the resulting model. The ability to use ad hoc depen-
dencies enables the creation of realistic models, while independence defaults
reduce time and space complexities.

Bayesian Networks

Bayesian networks are the most popular of the current network-based ap-
proaches. They are parameterized by conditional probabilities and offer the
ability to explicitly represent dependencies among random variables at arbi-
trary levels of detail. Further, there are many published algorithms to reason
with and about them. The networks possess straightforward interpretations
and this fact reduces the effort required to elicit the parameters as well as
validate the encoded domain model.

The time and space complexities for the representation of a Bayesian
network can range from a linear to an exponential function of network size
and topology. The space complexity is dominated by the size of the network
parameters, and for many classes of networks, is bound by a polynomial in
the number of nodes. For example, if the in-degree of all nodes is bound
by a constant, then the space bound is linear. In addition, if the networks
are singly connected, then the time complexity is linear as well. However,
general probabilistic inference is an NP-hard problem, even for the restricted
class of networks where each node has at most two parents.
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Formal Definition

A Bayesian network is a directed acyclic graph whose nodes represent ran-
dom variables and whose edges represent probabilistic dependencies. Under
a causal interpretation, the edges represent direct causal influences that are
quantified by probability distributions associated with the nodes. For exam-
ple, in Figure 1, A and B directly influence C. The influence of A and B
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Figure 1: A Bayesian Network.

upon C is quantified by the conditional probability distribution, P (C|AB),
associated with C. Similarly, the influence of C upon D is quantified by
the conditional probability distribution, P (D|C), associated with D. The
variables, A and B, are respectively quantified by the marginal distributions
P (A) and P (B). Finally, the principle of assuming independence where pos-
sible is a type of closed world assumption used to delineate the semantics of
the network. Thus, the joint distribution over all variables,

P (ABCD) = P (A)P (B)P (C|AB)P (D|C),

is assumed to be the product of the distributions associated with the nodes.
The edges of the Bayesian network in Figure 1 denote direct dependen-

cies. Since A influences C and C influences D it follows that A indirectly
influences D. However, there is no edge joining A and D, so A has no direct
influence upon D. Thus, the influence of A upon D is completely mediated
by C. This means, in terms of probability theory, that A and D are con-
ditionally independent given C. This conditional independence is denoted
by I(A,D|C). Similarly, since no variable influences both A and B, they
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are marginally independent, written I(A,B|∅). The derivation of such I-
statements is a manifestation of the default rule that assumes independence
whenever it is consistent with the network.

While the interpretation of Bayesian networks was suggested by causal
considerations, the formal semantics make no reference to causality. The
nodes correspond to random variables and the topology of the graph rep-
resents a decomposition of the joint distribution into a product of several
smaller conditional distributions. Thus, Bayesian networks are applicable to
domains even when little or no causal information is available.

Papers in this Special Issue

Empirical problem-solving begins with an assessment of the type and quality
of the domain knowledge available. The papers in this special issue describe
methodology and theory that is useful when the available knowledge is prob-
abilistic in nature. Four of the papers discuss methods to draw inferences
when the available quantitative knowledge is insufficient to build a traditional
Bayesian network. Three papers present meta-technology that automatically
tailors Bayesian networks to particular problem instances. The remaining
papers are concerned with the issues of representation, verification, and in-
ference.

Bayesian networks require the specification of exact probability values.
The possible sources of this data are physical models, statistical samples,
and expert judgements. However, these sources are not always capable of
providing sufficient quantitative information. The papers by Fertig & Breese,
Goldszmidt, Morris & Pearl, Wellman & Henrion, and Bhatnagar & Kanal
discuss methods to approximate probabilistic reasoning when the required
distributions are not available. For example, Fertig & Breese develop infer-
ence techniques for Bayesian networks that are quantified by bounds rather
than exact probability values.

Goldszmidt, Morris & Pearl discuss reasoning in a framework where the
knowledge consists of qualitative default rules admitting exceptions. These
rules are modeled as statements whose probabilities are infinitesimally re-
moved from 1. Inferences are made using maximum entropy to minimize the
number of extraneous dependency assumptions. While this paper maintains
the spirit of assuming independence whenever consistent with a network of
dependencies, it marks a departure from the standard Bayesian network for-
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malism. The remaining papers discuss methods that are specifically related
to Bayesian networks.

The parameters of a Bayesian network can encode many qualitative re-
lationships that are not reflected in the graphical structure. For example,
Wellman & Henrion identify monotonic influences and annotate links of the
network with signs indicating the polarity of their influences. Bhatnagar &
Kanal use directed hyper-edges as a sharper causal language to cluster the
parents of a node into subsets that represent individual qualitative causal
relationships. Both papers identify sources of hidden qualitative information
and describe methods that enable inferences based soly upon this informa-
tion. Thus, one contribution of these papers is that they provide methods
for performing inference when only some qualitative and no quantitative in-
formation is available.

Generally, domain models encode the knowledge necessary to solve several
related problems. When a model is large and direct computations with it
are not feasible, techniques are required to specialize the model. Provan &
Clarke accomplish this task using a data base of prior cases, while Goldman &
Charniak use domain-specific meta-rules to construct an appropriate network
for a given problem. Sarkar & Boyer tackle vision problems using network-
templates that represent geometric relations. Each of these papers describes a
method for using general domain knowledge to construct a Bayesian network
that is tailored to a particular problem instance. The use of a specific network
not only makes the inference process faster, it provides a basis for generating
better explanations as well.

The remaining papers in this issue concern problems of representation,
verification, and inference that occur when currently available algorithms
are applied to the network. Olesen extends current practice with technol-
ogy that permits both discrete and continuous variables to be used in the
same Bayesian network. Cowell, Dawid & Spiegelhalter present a method
to monitor inference processes within a Bayesian network to help a scientist
assess the fidelity of the encoded model. The papers by Dagum & Chavez
and Heckerman, Horvitz & Middleton both address methods that speed up
the inference process. The former use stochastic simulation to approximate
posterior probabilities to a given precision for a given certainty factor. The
latter use a cost-benefit analysis to assess the utility of making observations
and recomputing the posteriors.
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Additional References

The following references summarize the foundations for the research reported
in this special issue. They recast prior work in probabilistic reasoning in
the framework of a network-based approach. Though they differ in exact
notation, all focus on the issue of how to use knowledge of probabilistic
independence to advantage.
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