AD-AO%4 883 SYSTEM DEVELOPMENT CORP SANTA MONICA CALIF F/6 9/2 g
KNOWLEDGE=BASED SYSTEMS: A TUTORIAL: (U) :
JUN 77 J A BARNETT: M I BERNSTEIN MDA904=76=C=0343

UNCLASSIFIED SDC=TM=(L)=5903/000/00

NL
I 44883
| S

=

P

-~

AD No:

an)
ve;
o0
<t
<
-
<
o
<<

KNOWLEDGE BASED SYSTEMS:

A TUTORIAL
> o, IR
o Y _
(> o \
(- . a9
(8 A\ «1’1@\'
= \\ V\o
[ol
[m— ‘
[

30 JUNE 1977

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

TM-(L)-5903/000/00

System Development Corporation

24 August 1977 A

TM-(L)=5903/000/00A

MODIEICATIEN TGE [s

TM-(L)-5903/000/00, "Knowledge-Based Systems:

A Tutorial," dated 30 June 1977 SERPDVS aryre

System Development Corporation
2500 Colorado Avenue * Santa Maonica, California SO40Q6

M. I. Bernstein

CURRENT MODIFICATIONS
ERRATA

the page, negative numbers from the bottom. "X ==: Y" means
"X should read as Y."

[BROWNTS5Db],

=6 =2 whole line ==:
(MOOREJT3], [SIROVICKT2], and

Listing is by page number and line. Positive line numbers count from top of

2-3 +2 of the vehicle ==: of a vehicle

2-10 +2 method or operation ==: method of operation

2-1k -6 [NILSSONT1] ==: [NILSSONT1])

2-20 -11 whole line ==: ment institution system which provides interactive
support to

3-5 +9 below under the ==: below with the

3-6 +6 set of four special ==: set of special

3-12 +2 L8 QUESTION 48 ==: QUESTION 48

L-1 +8 systems. (KBS). ==: systems (KBS).

Lok -6 a technigal option ==: a technical option

L-5 +9 and plausible ==: and principles of plausible

b6 +1 [FREUD 60 and 55] ==: [FREUD60, 55]

L-6 +3 [BARTLETT 32] ==: [BARTLETT32]

ba§ <3 [BOBROW 75b and 7S5c], [BROWN 75b], ==: [BOBROWDTSb, T75c],

(CHARNIAKT7S], [COLLINST6], [HAWKINSON7SI,

A-2402 (8/73)

2L August 1977

L6 -1

L-9 +6

L-10
L-10
L1l

L-11

L-11

411

L-11

L-11
4-12
L-12
L-16
4-18
L-20

L-20

+5
2
12

+12

+13

+1L4

+15

*LE
-12
-2

-10

System Development Corporation
B T™-(L)-5903/000/00A

[WEISS 61]

[WEISS61]

form which ==: from which

intelligent perfromance ==: intelligent performance

to product acceptable ==: to produce acceptable
[SHCRTLIFFE 76] ==: [SHORTLIFFET6]

[ZADEH 75, ==: [ZADEHTS,

T4, and 65] and [GOGUEN 68]. ==: Tk, 65] and [GOGUEN68].

[CARNAP 50], [HEMPEL 45], and [HARRE T70]. ==:
(CARNAP50], [HEMPELL4S], and [HARRETO].

[TVERSKY 72] and [LUCE 65]. Also see [TORNEBOHM 66] ==:
[TVERSKYT2] and [LUCE65]. Also see [TORNEBOHM66]

The first data ==: the first, data
procedural ,¥ ==: procedural¥,
[WINOGRAD 75] ==: [WINOGRADTS]

not "how ==: not "How

end state ==: end state

power ,* ==: power*,

"pot empty,” "satisfied," and "thirsty." ==: 'pot empty",
"satisfied", and "thirsty".

[FISHER 70] ==: [FISHERTO0]

and user to ==: and used to

A" ==: "AM,

[MINSKY 67] ==: [MINSKY6T]

effective program ==: effective procedure
temperature, because ==: temperature because

if a human ==: if human

st

o i i

O -

24 August 1977

L-31
L-31
L-31
4-36

4=37 -

L-39
L-ko
Lk
Lkl
L-k5
L-Ls
4-L5
L-L6
L-48

L-48
L-kg
L-L9
L-k9
L-51
L-51

b-51

L-53

b

+h

=11
+10
-2
-1
-2

+6

-2

+5

System Development Corporation

c T™-(L)-5903/000/00A
(BOBROWTSd] ==: [BOBROWDT75d]
[BOBROWT3] ==: [BOBROWD73]
[R. MOORET5] ==: [MCORERTS5]
add at bottom of page
(@y)x=~((¥y)(~X))
predicate calculate ==: predicate calculus
[P. KLAHRTT] ==: [KLAHRPT7T7]
(4) (¥x3) (%) ==: (L) (¥x3) (¥x),)
the box is X3 == the box if X3
At such ==: As such
and W in ==: and ~W in
(P. KLAHRTT ==: [KLAHRPTT7,
and 75], ==: 751,
T to 12, ==: T to 12, and

insert new lines
best match--Execute the rule whose LHS is the best match
to the workspace.

[Post 36] ==: [POST36]

#$ 48 => ==: #$, #$ =>

HLS #S HS==>#S #8448 4 ==: HLS #S #S #=>48, #5485 ¢
#S A8 => ==: #HS #S H=>

el ==: a1

|e2 ==: |a2

exp[(* A (* BC))] ==: exp [(+A (*BC))]

service manager ==: service representative

24 August 1977

L-55 +11
L-55 -13
4-58 +10
L-60 +10
L-61 -10
L-62 -10

4-65 -6

L.66 +3
L.66 +4
L_66 +5
L-67 -1

L-68

L-69 +4
L-69 -10
L-T2 +L
L_T72 +6

LT3 +7

whole line ==:
[HEDRICKT6, Tu4], [McDERMOTTJT6a,

DOG ——p» BOWSER ==:

(MYLOPAULOST52 and 75b] ==:

System Development Corporation
D TM-{L)-5903/000/00A

service manager (SvrM) ==: service representative (SrvR)

service manager ==: service representative

derived conditions. ==: rules, "derived conditions".
charge. This is an ==: charge, an
discussion in showing ==: discussion by showing
and procedures to ==: and programs to

(CHOMSKY63], [DAVIST6, 75], [GALLERTO],

whole line ==: T6b], [MINSKY6T], [MOOREJ73], [NEWELLT6al,
[POSTL3, 36], and [VERETT].

[WATERMANTS, T4 and 70] ==: [WATERMANTS, T4, 70]

[DAVISTT and 76], and [SHORTLIFFE7T6, T75a, TSb, and 73 ==:
[DAVISTT7, 76], and [SHORTLIFFET6, T5a, TS5b, 73]

72, and 69] ==: T2, 69]

[MARTINTS] ==: [STEFIKTT]

[ANDERSONT62 and T6b] ==: [ANDERSONT6a, T6b]
[RYCHENERT6 ==: [RYCHENERT6,

and T5l. =2 T5].

in the figure. ==: 1in the figure--the arrows connect the
relation's arguments in their order of occurrence.

DOG —L5A 5 BOWSER
==: CAT
==: WFFs
==: MARY'S
==: BOB'S

[MYLOPAULOST75a, T5b]

24 August 1977

476 -8
L-78 +11
L-78 -3
L-78 -2
L-79 +10
L4L-84 +8
L-86 +u
L-89 -3
490 +3
L-95 -11
.b-95 -6
! k=95 -5
| L-95 -3
F 4-95 -1

b L-96 -12
49T -5

4-98 +2
L-10kL +3
L-10L4 -6
L-105 +11
4-107 -k
| L-109 -6

L-110 +11

System Development Corporation
E TM-(L)-5903/000/00A

lines. A general ==: lines: a general

can become more ==: can be incorporated into one that is more

[DBOBROWTTa, T
(GOLDSTEINT6]
[KAHN 75] ==:

more knowledge

To, and TS5c] ==: [BOBROWDTTa, TTb, T5Sc]
==: [GOLDSTEINT6]
(KAHNTS]

==: more irdependent knowledge

[ERMAN 75] ==: [ERMANTS]

performed are the ==: performed is the

[NILSSON 71] ==: [NILSSONT1]

[HEWITT 72] ==: [HEWITT72]

L.1.2.1 ==: L.1.2.6

(BOBROW 77a] ==: [BOBROWDT7Tal

[wooDs 75] ==: [WOODST5]

whole line ==: described in: [BARNETT7Sa], [BERNSTEINT6],

[MOOREJT3] and

[J. MOORE 73]

finding it. ==:

related.

some weaken =

[WwoopsT761].
==: [MOOREJT3]

finding it though these two costs are often

=: some weakened

system backs up ==: system could back up
graph was ==: graphs were

(P. KLAHRTT] ==: [KLAHRPTT]

if either ==:

has been prcve

f <old £ ==:

if either function

d ==: has been proven

? < old ?

- — | 4

System Development Corporation

24 August 1977 F TM-(L)~5903/000/00A

4-110 +12 f with new £ ==: % with new ? |
4-110 +14 £ ==: *f

’ L-113 +10 [NILSSONT1 and 69] ==: [NILSSONT1l, 69] i

L-113 +13 an entity. ==: a domain. !
Lo11kh +7 of the entity ==: of the domain

L-116 +9 statistical technique, ==: stochastic technique, e.g., Monte

Carlo.

L-117 -2 [BOBROWTSb] ==: [BOBROWDTSDb]

4122 -11 about x?" ==: about X?" :
4-122 -3 [Weizenbaum 66] ==: [WEIZENBAUM66] i
L-123 +6 $, = &
4-123 +6 "Mary," ==: "Mary",

k=123 -12 [WoODST3 and 70] ==: [WOODST73, TO]

h=125 =12 network) help ==: network) +o help

h-127 -6 becaise ==: Dbecause

=120 =3 complaint depart ==: complaint department

4L-130 -1k he employe, ==: he employs,

L-132 +7 [MALHOTRAT76,75a and 75b] ==: [MALHOTRAT6, T5a, 75b]

L-132 -6 true or systems ==: true of systems

L-13L +2 (McDERMOTTT4] ==: [McDERMOTTDTYb]

b=13L +4 [JMOORET4] ==: [MOOREJTL]

5-1 +3 where it is ==: where it is in common use and the technigues are

commonly understood. And, though there is a fair body of
literature on a variety of topics related to KBS technology,
there is

2k August 1977

5-2 +k4
5-2 +5
5-2 =5
5=3 +9
5-9 -1
5-13 +10
5-14 +10
5-1L +16
7-2 +1L
T=-2 +15
7-5 -8
7=5 =5
8-16 +2
A-1 -13
A-3 -9

A-25 +15

System Development'Corporation
G T™-(L)-5903/000/00A

technology. On the ==: technology, unless

other hand, the ==: the

whole line ==: assure conperation early in the planning process.
Meta-DENDRAL ==: META-DENDRAL

to implemen}. ==: to implement, though more difficult to modify.

aggregates, such ==: aggregates such
user's ==: users'

user's ==: users'

[MINSKY75] ==: [MINSKYTS])

(KRL) [BOBROWDTTb]. ==: (KRL [BOBROWDTTb]).
Meta-DENDRAL ==: META-DENDRAL

Meta-DENDRAL ==: META-DENDRAL

Understanding systems, ==: Understanding understanding systems,
(KLAHRDT5] ==: [KLAHRDTY]

[BOBROWDTTa]. ==: [BOBROWDTTal).

Meta-DENDRAL ==: META-DENDRAL

KNOWLEDGE-BASED SYSTEMS:
A TUTORIAL.

J. A. BARNETT
M. |. BERNSTEIN

APPROVED FOR PUBLIC RELEASE; 30 JUNE 1977
DISTRIBUTION UNLIMITED

THE WORK REPORTED HEREIN WAS PERFORMED UNDER CONTRACT
MDA 904-76-C-0343 FOR THE MARYLAND PROCUREMENT OFFICE.

.~ TM(L)-5903/000/00

DDC FiLE copy

' -

{

L bad d

System Development Corporation

30 June 1977 i

oS

TABLE OF CONTENTS

HPRGBUCTION . « v o o s & % o o wibi s o me 3 s
KNOWLEDGE-BASED SYSTEMS . . . & o 5 & & o v s u v s s'is = »

2.1
2.2

(o2& B~ O]

WWwWwWwwWwww = PPN
NOYOYH G N\ 4

ARYROTHETICRI KBS & o v o 0 ¢ f 0 . da als il s oA
GENERAE CONCEPTS . .5 @ W i'h s v & & v w5 & & »

2.2.1 The Knowledge Base.
2.2.2 Separation of KBS Elements

THE COGNITIVE ENGINE
THE KNOWEEDGE BASE & « o v v v 8 & o & & v 4 o w a5+
L 100 R e e S e e R L M
SUMMARY . .« & v v ¢ 5 s i w s ok s e e e e

THE PROBLEM DOMAIN AND THE USERS
YYCIN'S KNOWEEDGE BASE o . v & & o v s & o v » & & @ &
MCIN'S COGNITIVE ENGINE . . . & & « & ¢ o n o v o « »
ATGEN'S EXPLANATIONS « 2 . & & & v v o v 4 % o o % wos
MYCIN'S ENTERFACES o = « oie @ o o v @ v v o 5 o o 5
DESIGN CONSIDERATIONS FOR MYCIN
SARY | s e W e e e e e s e e e s

TECHNIQUES USED TO CONSTRUCT KBS . . ¢ « ¢« v o & o« ¢ & « &

4.1

4.2

4.3

KNOWLEDGE REPRESENTATION ¢« « ¢ ¢ ¢ o o & & &«

4.1.1 Characteristics and Terminology of Knowledge
SURNECES, B, e | i e e e, T o e st E W
4.1.2 Methods of Representing KS
4.1.3 Comparison of Knowledge Representation
TecnnIques and ISSUBS « v ¢ & « w4 s w5 ow s

WORKSPACE REPRESENTATION . . . « ¢ v v ¢ ¢ v ¢ o o & &

§.2.1 The CMU Blackborad . . « « « v ¢« o s 5 &« & & »
Boeet MOVE BLAPNS. o v o wiii wou o % 6 6 s % e w o w o
4.2.3 KS Format and Special Methods

THE COGNITIVE ENGINE « ¢« « « ¢ ¢« s v s o & & &

4.3.1 Terminology, Measurements, and Characterizations
L T R g L S

4.3.2 Methods of Implementing the CE

Q.5.3 CL ISSUBE & & v v 6 +fv v v v % % % % % s

TM-5903/000/00

e 1 A AP A

_———— ——

System Development Corporation
30 June 1977 ii TM-5903/000/00

TABLE OF CONTENTS
(Continued)

45055 THECINEERERGER s ol Sl o e e i v .0 e i e s

4.4, ‘The'llser'Interface = . « s & & & = 4 v & = e 5 e
4.4.2 The Expert Interface and Knowledge
ACQUISTEION: of & ot i o e e e s e e e

APPLICATION CONSTDERABIONS = o v v v o o sl 0 s v & & o o = &

TNBEIARS CONSEDERMBIONS S i i s e s o e o o s
TJECHNOLOGY CONSIDERAREENS o . « . « « o « o« « »
ENVIRONMENTAL CONSIDERATIONS
SUNIAREY 16k o W o 6 g o e b o O 0hT o B B oG

v USIONS AND RECOMMENBRBIONS - . . o ¢« « « s« v 5 o s » & &
AWNGTET 2 S SETUGRAPHYE G al e s o o e e e e e e e e
S SR R TR B T 5 S et oo 010 et L o G S A R

e A €0
-

[

APPENDICES

APPENDiIX A: A TAXONOMY OF KNOWLEDGE AND COGNITIVE SKILLS

APPENDIX &: CURRENT WORK IN KNOWLEDGE-BASED SYSTEMS
ANEE RELARED ARERS: « o o v« oo 5 s v 5 « a5 & s 4

Page

4-120
4-121

4-130
5-1

5-2
5-7

5-12
5-14

6-1
7-1

A-1

B-1

30 June 1977

Figure

2-1
4-1
4-2
4-3

L-4
4-5

4-6

4-7

4-3

4-9

4-10
4-1
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22

4-23
4-24
4-25

System Development Corporation
iii TM-5903/000/00

LIST OF FIGURES

KBS Elements and Their Relationship . . « ¢« « ¢ « « ¢« « « &

Restrictions on Choices of KBS Methodologies

Knowledge Representation Forms

Finite-State Machine Representation of a Plan to
Make and Drink a Pot of Coffee.

Finite State Recognizers for (AB)* (ABAC)* D
Procedural Knowledge Example. « « « « . . .

Proof that dack Lives in BoSton « « & « = o =« & o o & s o

The Monkey and Bananas Problem.

Control Mechanism for Production Systems

Use of Production Rules to Multiply

Use of Production Rules to Translate.

Production Rules for Automotive System KS

Data Gathering Procedure Fact File.

Example Flow in Auto Diagnostic System

Back Chaining

Fragment of Graph Structure . . ¢ & « @ < o o & © o e w5

Fragment of Graph Structtre . « « « ¢« & « o 5 o o & & @ o

Facets of Production Systems.

Example Semantic Network. « « ¢ ¢« « o ¢« o

Example Frame Definitions « . « & « & & o ¢ o & o o 5 & o &

Inexact Match by a Frame System

Comparison of Knowledge Representation Techniques

Hearsay II Levels of Resresentation and Knowledge

Sources (from [ERMAN 75
Blackboard Example. .

) PN o R

.................

Game Tree for Tic-Tac-Toe . . . « v ¢ v v v v v v v o« o o

Example AND/OR Graph

4-19
4-22
4-26
4-40
4-42
4-47
4-49
4-51
4-54
4-56
4-57
4-59
4-61
4-62
4-63
4-68
4-75
4-77
4-80

4-87
4-88
4-91
4-93

e ——
i o ik 18

System Development Corporation
30 June 1977 iv TM-5903/000/00

LIST OF FIGURES

(Continued)
Figure Page
4-26 Example Move Graph and Balanced Tree. 4-100
4-27 Chaining Examples . . 0 Ul o & SR S e R 5 aG Y ol e e 4-103 }
4-28 Depth-First Back Chaining . < o ci i o o o e e b e e e 4-105 s
4-29 Search with Evaluation Function 4-108 i
4-30 A* SearchtAlgorithm o . - o o o v e L 4-110
4-31 Alpha-Beta Pruning Example 4-112
4-32 Modeling and Simulation Example 4-115
4-33 Transition Network Example . . . ¢ « ¢ ¢ ¢ « ¢ « & o & o & 4-124
4-34 Knowledge Acquisition 4-131
APPENDIX A 1]
Al. Outline of the Taxonomy of Knowledge and | 4
30311 1g b 1 R R e e i e L e i A-2 P 3
LIST OF TABLES
Table
4.1 ORIGINS OF KBS TECHNIQUES. « = =« v o oie 4 o & o oo v o 4-2

R i

|

System Development Corporation
30 June 1977 1-1 TM-5903/000/00

KNOWLEDGE-BASED SYSTEMS: A TUTORIAL 1

1. INTRODUCTION

This report surveys recent and current work in interactive knowledge-based
systems (KBS), defining and explaining KBS concepts and technology. AOur pur-
pose is to give those wlio may be interested in the app]ication of such systems
a means of assessing their present potential use./<wé‘explore;both the capa- 1
bilities and the Timitations of KBS technology as'they are observable and 3
predictable in existing systems, and wg;provide;references and a bibliography
that will permit those who want to further explore th% topic on their own. .

Section 2 describes a hypothetical KBS application and defines KBS techniques
as they are understood and implemented in existing systems. Section 3 contains
a case study of MYCIN, which is, we believe, the best representative of KBS
technology. In Section 4, we describe in detail and at length the techniques

e,

that are used to build KB systems, and in Section 5, we examine the applica-
bility of existing and emerging KBS techniques and discuss what we believe are
boundary conditions and Timitations. Finally, we offer our conclusions and
recommendations on how to best apply KBS technology and we suggest some direc-
tions for future KBS research. The annotated bibliography should provide
readers with adequate references to the body of KBS literature. Two appendices 3

ke

are included, as well: one is our adaptation of a taxonomy of knowledge and
cognitive skills [BLOOM56], and the other is a compilation of the current KBS
research and development projects that sets forth the institution, the prin-
cipal investigator, and a short description of each project. C

System Development Corporation
30 June 1977 2-1 TM-5903/000/00

2. KNOWLEDGE-BASED SYSTEMS

It is necessary to distinguish, at the outset, between knowledge-based systems
and other computer-based systems that contain or incorporate knowledge. Almost
all computer programs and systems contain knowledge of at least two kinds:
knowledge about things and knowledge about what to do with things--that is, how
0 manipulate or transform them. But we define a knowledge-based system as one
17 wnoicr <rowledge is collected in one or more compartments (called knowledge
sources,; anc is of the kind that facilitates problem solving (reasoning) in a
singie, weli-defined problem domain. Problems are solved by applying the kind

of reasoning that is used by a practitioner in the domain in which the KBS is
applied. Uniike generalized problem-solving systems, knowledge-based systems
must accumulate large amounts of knowledge in specific domains and rely on
domain-specific problem-solving techniques that can be developed to a high level
of expertise [DAVIS77].

In considering systems for inclusion in (or exciusion from) the category of
"knowledge-based" systems, we have imposed some conditions that exclude systems
that others have identified as being knowledge based. We have specifically
excluded systems that are research prototypes that were not and are not inten-
ded to be put to productive use. Many of the systems that we consider to be
outside the KBS domain, as we have defined it, do, however, embody technology
that is incorporated in the KB systems we do include; in a sense, then, they
are included, if only indirectly. None of the speech-understanding systems
developed under the sponsorship of the Defense Advanced Research Projects
Agency are included, for example, yet much of the technology they embody is
incorporated in systems we do include, such as MOLGEN [STEFIK77]. This is a
conservative approach, and if it errs, it errs in the proper direction, if only
] because it does not raise unwarranted expectations. We have made no attempt to
E define knowledge in other than operational (or utilitarian) terms. Readers

who are interested in pursuing the philosophical aspects of the definitions of
knowledge should consult Appendix A, which is a modification and summarization
F of [BLOOMS6].

Systems Development Corporation
~une 1977 2-2 TM-5903/000/00

2.1 A HYPOTHETICAL KBS
Tne Toliowing is a brief description and example of a simple, hypothetical KBS
application that illustrates most of the capabilities of KB systems. The appli-
cation is one that should be familiar to most readers and would be feasible to

build, although no such system presently exists.

The hypothetical system is an automotive service consultant whose primary pur-
pose is to help ensure the best service at the least cost for automobiles
brought to a service agency or garage. The system is to be used both by the
service representative, who is the primary interface between the customers and
the establishment, and by the mechanics who work on the cars. Though it func-
tions as a simple data management system in routine circumstances, its value
lies in its ability to diagnose subtle problems from symptoms and problems
presented by the customer (to the service representative) or by the mechanic
when he discovers a non-routine problem in performing service and repair. Its
benefit is that it ensures a uniformly high level of service to customers and
requires of mechanics only that they have good mechanical skills, but not
necessarily good diagnostic skills, and of service representatives that they be
able to listen carefully to customers' complaints. Both customers and the
service agency benefit, because unnecessary repairs are eliminated and it is
highly likely that what has been done corrects the problem the first time.
Although the reasoning skills required by such a KB system are relatively
simple, the amount of knowledge required (exclusive of the normal data base)
is large because of the number and variety of automotive subsystems involved
and the high degree 7 tneir interdependence.

The data base of the system would contain a description of each car serviced at
the agency. The description would contain the configuration of the vehicle's
engine, running gear, and optional and special equipment, as well as the year
of manufacture, model, color, service history, and other pertinent data.

System Development Corporation
30 June 1977 2-3 TM-5903/000/00

The system would contain two basic kinds of knowledge: (1) generic knowledge
about the major elements of the vehicle (such as its cooling, ignition, and
fuel systems) and (2) knowledge about the model and its specific options.
Diagnostic knowledge would be necessary to relate symptoms to causes and to
relate specific knowledge to generic knowledge. For instance, poor engine per-
formance could result from mechanical problems (valves, rings) or from related
systems (cooling, ignition, or carburetion).

The intent of the system is to recommend (1) the least expensive tests (where a
specific remedy is not obvious) that will produce the greatest amount of spe-
cific information about the cause of the problem, and (2) the Teast expensive
repairs for the problem. The system could also recommend the best post-repair
testing to verify that the problem has been removed. The system would explain
its recommendations or conclusions if asked.

The following is a hypothetical scenario of such a system in operation. The
users are the service representative and the mechanic(s) performing the test
and repair work. The user language is a stylized English designed to convey a
maximum amount of information between the user and the system with a minimum
amount of effort.

System: Tuesday, May 3, 1977, 08:32:44

Service rep: Next customer

System: Enter owner's name or vehicle ID number

Service rep: 1743 HBAQ 8197

System: Owner is S.B. Franklin, car is 1974 Ford Gran Torino 4-dr sedan
with 351-2V engine, A/C, P/S, P/B and CA smog controls. Last service —
April 4, 1977 at 28,412 mi R&R water pump and lower radiator hose, what

is present mileage?
Service rep: 29285

System Development Corporation
30 June 1977 2-4 TM-5903/000/00

System: Please inform owner that the following regular maintenance
services are due:

1. Change o0il and filter — last changed on Jan 13, 1977 at 24,842 mi.

May we be of other service?

Service rep: Battery not keeping charge, barely able to start car this a.m.
System: Any other symptoms or problems?

Service rep: No

System: Check belt tension on alternator — most 1likely cause.

Service rep: Why?

System: Last service required removal of fan and belts, very likely that
tension was not properly set on reinstallation.

Service rep: More (meaning more things to be checked or tested)

§ystem: Cﬁeck fluid Tevel in battery — next most likely cause —

overcharged battery. If level is low, check alternator output and
voltage regulator.

Service rep: Replace battery?

System: No, battery is 6 mos old and should take recharge.

Service rep: Thank you. (Signal to system that session is ended for now)
System: Car assigned number 287 in control system. First test to be
performed by J. K. Uzzi in Bay 17.

After the car is moved to the mechanic's work area and the prescribed
tests are performed, the following interchange takes place between the
mechanic and the system:

Mechanic: JKU. 17, 287 (indicating mechanic, bay, and car being serviced)
System: 1974 © 'an Torino, test results please.

Mechanic: Belt tension OK, battery level 0K, charge low, alternator, VR
output OK. Problem not found.

) System: Test for above-normal current flow with ignition off. (Mechanic
attaches ammeter and takes reading.)

{
Mechanic: Reading above normal }
|
?

System Development Corporation
30 June 1977 2-5 TM-5903/000/00

System: Check for faulty switch in hood 1ight, trunk 1ight, and
courtesy lights.

Mechanic finds faulty switch in trunk 1ight such that 1ight never turns
off.

Mechanic: Faulty trunk light switch R&R. Current reading normal.

What specific knowledge must such a system incorporate in order to diagnose and
suggest remedies? First, the knowledge must come from experts who have
acquired and demonstrated diagnostic skills that are better than random selec-
tion. For the system to have suggested checking the belt tension of the alter-
nator, it would have to know that the earlier removal of the belt could be
related to the present problem, that the severity of the problem would depend
on how poorly the tension was adjusted, and that one month and about 900 miles
before appearance of symptoms (battery failure) is not unreasonable. Since it
is a highly probable cause and the easiest to test, it ranks as the first sug-
gestion. By requesting more information, the service representative can tell
the owner what else may be required and what will not 1ikely be required, such
as a new battery.,

The successful KB systems of today function in essentially this manner but in
the more esoteric fields of medicine, chemistry, biochemistry, and the like.
Functionally, they do not do more, though they solve more difficult problems,
in the sense that the reasoning chains may be longer. The knowledge, however,
is of a similar variety, and the interactive discourse has the same flavor of
naturainess and civility.

System Development Corporation
30 June 1977 2-6 TM-5903/000/00

2.2 GENERAL CONCEPTS

A knowledge-based system is one that supports practitioners in a specific
knowledge domain by incorporating the knowledge acquired from experts in that
dcmain and applying it, in combination with certain reasoning skills, to the
solution of problems posed by the practitioners. In other words, a KBS func-
tions as an intelligent assistant--a substitute for the expert human consultant
who may be needed but unavailable. A KBS may produce solutions or explanations
that are more thorough than those produced by a human expert, and may produce
them more rapidly; however, one should not assume that the KBS is inherently
better than the human. The human has imagination and the capacity for inno-
vation, which even the most expert KBS does not.

There are two kinds of knowledge-based systems: those called diagnostic (or
problem-solving) and those called pedagogic. The diagnostic systems are
designed to help their users solve problems in specific areas; the pedagogic
systems are designed to convey information about specific topics. The two have
much in common, both structurally and technologically. (The problem-solving
KBS may, of course, teach its users [SHORTLIFFE76], but that is not its
primary function.) The distinction is in the users, who are either prac-
titioners or students. A pedagogical system is likely to have less expert
knowledge about an area but considerable knowledge about how an understanding
of the content of that area is best taught; a diagnostic system may contain a
large collection of knowledge acquired from experts in an area (and may edu-
cate users by repeatedly exposing them to this knowledge and to the reasoning
that goes with it). .ut is not designed primarily to assist a human's learning

*
process.

*The user of a diagnostic or problem-solving KBS must be an experienced, know-
ledgeable practitioner in the field for which the KBS is designed, since only
someone knowledgeable in the area of application can guide the diagnosis and
understand the relevance or limitations of the results. MYCIN, for example,
is intended for the doctor, not for the patient (assuming that the patient is
not a doctor).

System Development Corporation |
30 June 1977 2-7 TM-5903/000/00

A KBS is composed of three components or modules: (1) an interface, (2) a
cognitive engine, and (3) a knowledge base (see Figure 2.1). (These labels are
not used uniformly in the KBS literature, but they do refer to components that
perform similar functions.) The knowledge base--the passive element in the
system--contains the knowledge sources and fact files. The existence of a
knowledge source is a necessary condition. The knowledge source contains the
"expertise'"--for example, the knowledge of the cause-and-effect relationships
or methods and procedures specific to the knowledge domain. The fact files,

if present, contain other relevant facts and data.

The cognitive engine drives the system. It performs the system's problem-
solving (inference-making or reasoning) operations. It applies the knowledge
in the knowledge sources and uses the fact files in the knowledge base to
answer questions or solve the problem posed by the user.

The interface provides interactive communication between the user and the sys-
tem. It allows for the acquisition of data in a variety of forms--a real-time
signal, a file of observations, data provided by the user, etc., and for the
addition or modification of knowledge in the knowledge base.

A KBS acts as a special-purpose "intelligent agent" on behalf or at the behest
of its user; it is not a general-purpose problem solver. It provides sup-
portive knowledge in a well-defined, clearly bounded problem domain. As the
user's agent, it must be invoked by the user, and the user must know when, why,
and how to invoke it. No present-day KBS is intended for use by a casual,
inexpert user. This is a qualitative discrimination that we make, and it is an

important one.

Parenthetically, there are a few systems that are referred to by their devel-

opers as being knowledge based but are not invoked by a user, and do not carry
on any dialog with a user, but respond to the occurrence of data input from an
external source. Thus though a user is the individual recipient of the system

H_m—_u_“__. ; A—

TM-5903/000/00

System Development Corporation

2-8

30 June 1977

diysuoLje|ay 4Ldy| pue Sjuswdly SEN " L-g d4nbL4
uoneuejdx3y
o41uo0
(Selid uonisinboy E_u_«_mSWQN o
| 3084 abpajmouyy Ca i e1eq
sn
| (s)adinog < > 011U0 < > Avijoey &
abpajmouyy mmvw_\so:w abenbuen L i
aseg auibugy
abpajmouyy aniztubon aoejia1u| r

waysAg paseg-~abpajmouyy

waisAg 133ndwo)

eieg

:

198

System Development Corporation
30 June 1977 2-9 TM-5903/000/00

results, he is a passive rather than an active participant in the problem-
soiving process. We have not included these systems in this report, but we do
not thereby exciude them from consideration as knowledge-based systems.

The Cognitive Engine (CE) provides the central control of the KBS. The CE's
principal function is to carry out the plausible reasoning and inference-making
that are the heart of the system's problem-solving ability. How the CE does
this affects both the power and the performance of the system, but is not the
sole determinant. A KBS's ability to solve a particular problem depends on

(1) how many paths there are to a solution, (2) the ability of the Cognitive
Engine to reduce the number of paths to a minimum, (3) the knowledge in the
Knowledge Base, and (4) what information is available within the prob]em;state-
ment. Therefore, although the Cognitive Engine is in command and acts as the
driving element, the path to a sclution, and the criteria for when to accept a
solution or abort a particular path or the entire effort are highly dependent on
the content of the KB and the problem data. The strategies for how to attack a
problem and the heuristics of how best to carry on the process are part of the
knowledge contained in the CE, and, while these include criteria for selecting
from among alternative paths at any point, the CE does not contain sufficient
knowledge to determine a priori when an acceptable solution has been found or
when the effort should be aborted. These considerations are part of the
knowledge in the KB concerning the goal for the problem and the related know-
ledge about what constitutes a reasonable effort. In this respect, a KBS
differs from most systems in that there is no guarantee that a solution exists
or, if one exists, that it will be found. In conventional systems, the failure
to find a solution or generate an answer implies an error in the data, the
problem formulation, or the system itself.

To qualify as a KBS, a system should possess the potential for explaining its
actions and reasoning processes with respect to an interaction with the user

or to a solution it produces. This is another function of the Cognitive Engine.
(This means not that every KBS can actually explain its behavior to its users,

System Development Corporation
30 June 1977 2-10 TM-5903/000/00

>ut that the functions necessary to do so can be added without changing the
method or operation of the KBS.) Explanations are given in terms of the con-

-t of the Knowledge Base, the problem data, and prior interactions with the
.er and are related only to past activity; the system cannot explain how it
mght deal with a hypothetical case or how it will continue in solving a
present problem.

The explanation will not indicate why and how the CE took the actions it took;
it will indicate only the results of those actions in terms of the Knowledge
Base, problem data, and user responses. Even so, the explanation may at times
be rich enough for the user to infer what search and inference mechanisms the
CE used.

The CE must also provide the mechanisms that facilitate the acquisition of new
knowledge, the modification of existing knowledge, and the expunging of erron-
eous or useless knowledge--all of which are done in cooperation with an expert.
A KBS does not generally permit its users to make permanent additions or
changes to the Knowledge Base.

In summary, the CE is the controlling, active element of the KBS that directs
the problem-solving activities, explains the system's behavior to its users upon

request, and manages the Knowledge Base.

2.2.1 The Knowledge Base

The Knowledge Base (B) of a KBS must, like the Cognitive Engine, be a well-
organized, readily icertifiable element of the system. Ideally, it should con-
tain all of the knowledge r - essary for the KBS to perform as an expert agent.
In most present-day KBS systems, some of the knowledge resides in the Cognitive
Engine (usually for reasons of efficiency), but the trend is away from this
division of the knowledge. The KB will contain such knowledge as stipulations
of the existence or non-existences of certain things, simple equivalence
relationships, relationships between the concrete and the abstract, knowledge

L

System Nevelopment Corporation
TM-5903/000/00

30 June 1977 2-11

of conventions about the domain, methods of the domain, etc.--in other words,
tre breadth of knowledge acquired by one who has become expert in solving prob-

lems in the domain for which the KBS is designed.

As we have noted earlier, the knowledge in the KB of a pedagogic KBS differs
(1) the knowledge of the
subject being taught need not be as great, and (2) the knowledge about how to

from that in the KB of a diagnostic KBS in two ways:

teach is quite rich. Since the intent of a pedagogic KBS is the education of
its user, it will not solve problems that would be useful or interesting to
workers in the domain. It is the KB, therefore, that determines the overall
power of a KBS and its usefulness to its users. This is not true of the know-
ledge incorporated in the CE, because the user has little cognizance of that
knowledge. The CE must be an adequate problem-solving mechanism, but it is the
knowledge in the KB that determines the breadth, depth, and overall domain of
applicability of the KBS. Regardless of its knowledge and power, the CE cannot
find solutions to problems for which the KB does not contain adequate knowledge:
on the other hand, a CE with only weak inference methods may find solutions,

albeit inefficiently, if the KB is rich enough.

2.2.2 Separation of KBS Elements

The separation of the elements of a KBS is a necessary condition for including

a system in that category, since it permits the changing of the domain of

applicability by extending, expanding, or substituting another KB independently
of the CE. There are several examples of this. EMYCIN® (for Empty MYCIN) is

the CE of MYCIN, to which several different KBs have been experimentally

attached for solving different classes of problems.

Kellogg's Deductive

Processor (DP) [KELLOGG77] is an independent CE to which may be attached

various KBs related to specific data-management systems and data bases to pro-
vide facilities for extracting implicit information from the explicit facts
contained in the data bases. Despite these exampies, however, there exists no

®
Private communication.

System Development Corporation
une 1977 d-l2 TM-5903/000/00

general theory of CEs, and, therefore, no general theory of knowledge-based
systems complete enough to permit the facility of substituting a KB from a
different domain as a means of creating a new KBS for that domain. That is,
while the CE and KB are separate, they are not completely independent of one
another.

None of the systems we have studied can modify the content of its CE or KB as

a result of having solved a problem. In other words, they do not learn or
adapt from experience or examples, even though such a capability would be
desirable. A present-day KBS can acquire additional knowledge for permanent
incorporation orly from expert informants, but even this only at the initiative

of its users or informants.

KBS technology arose out of artificial-intelligence (AI) research and is just
beginning to attain a separate identity of its own, which may account for some
of the confusion about what is and what is not a KBS. KBS technology is
rapidly evolving into an engineering-1like discipline. A KBS must meet specific
structural and organizational specifications. From one point of view, it must
incorporate many of the concepts embodied in "software engineering"--
specifically, the concept that functions be readily identifiable and incor-
porated in modules that can retain their unique identity within the integrated
whole. Thus, when we say that a KBS must have a CE or a KB, we mean that the
functions they provide or the needs they satisfy can be uniquely associated
witn the modules that implement them, and that the modules associated with one
function or need are distinct from those associated with another. This is
necessary in the cas: of a KBS for a number of important reasons. First, the
state of the technologies neceded for constructing KBS is not so thoroughly
understood that all of the correct design decisions can be made prior to
implementation and testing. Independence of the various components and

modules (as much as can at least realistically be achieved) makes chanae and
modification easier at least up to the point where fundamental design decisions
require change (such as the technique selected for representing knowledge).

System Development Corporation
30 June 1977 2-13 TM-5903/000/00

0f equal consideration is the fact that most KB systems are and will be
evolving systems. They will grow and change over time, as does most software,
but in somewhat unique ways. A KBS will be expected by its users to acquire
additional knowledge over time as experts gain deeper understanding in the
domain and as the need and utility to its users grow and change. This kind

of evolution cannot be accomplished in a system that is tightly bound together
as a monolithic software structure. This implies that it is not possible to
determine by external observation of a system's behavior alone whether or not

it qualifies as a KBS as we define the area. One must also examine the internal

structure for the existence of specific and separable functions or components.

In summary, then, to qualify as a KBS, a system must:

(1) be externally invoked by an expert or student in the domain of
applicability;

(2) have an identifiable CE that reasons plausibly using the KB and
whose solution path is controlled by the content of the KB and
problem data;

(3) have the potential for explaining its behavior;

(4) have an identifiabie KB that contains expert domain-specific
knowledge (this is the most critical aspect of a KBS); and

.. (5) be organized and structured so that its KB can be expanded and
; extended and the system's performance improved.

Frreovd L8 JVEC s v e

System Development Corporation
30 June 1977 2-14 TM-5903/000/00

2.3 THE COGNITIVE ENGINE

The Cognitive Engine (CE) combines and organizes the contents of the KB in
inference or seaych structures in order to perform plausible or common-sense
reasoning about the domain as it applies to the problem posed by the user. The
intent of the CE is to focus the effort as narrowly as possible on the problem
(or subproblem) at hand. In order for the CE to solve problems using search
techniques (or "heuristic" search techniques, as they are most frequently
referred to), it is necessary that there exist a generator for the hypotheses
from which the solution can be constructed (e.g., DENDRAL, [BUCHANAN73]).
Solutions in domains for which no such generator is possible must be found by
applying inferential or deductive processes over the knowledge of the KSs
(e.g., MYCIN, [SHORTLIFFE76]).

The knowledge contained in the CE may be general or meta-knowledge about how to
reason (infer or search) as well as domain-specific problem-solving knowledge.
The ultimate decision about what kind and what level of knowledge to incorporate
in the CE depends on the intent of the system and the complexity of the domain,
as well as on considerations about performance, efficiency, growth, and so on.

The depth to which the system will pursue a solution is determined primarily by
the content of the KB; it is not a unilateral decision incorporated in the CE.
This raises two issues: (1) whether the system will always find an answer or
solution if one exists (this is called completeness [NILSSON71] and (2) whether
the system will find the "best" answer or solution from the set of legitimate
ones (this is caller admissibility [NILSSON71]). The combination of knowledge
in the CE and in the KG determines whether or not a particular KBS satisfies
the completeness and admissibility criteria. This will be discussed in more
detail in Section 4.

System Development Corporation
30 June 1977 2-15 TM-5903/000/00

Through some existing KBSs can explain their lines of reasoning to the users and
others cannot, it is a necessary condition, as we have said, that a KBS be
capable of accommodating this requirement. The addition of an explanation com-
ponent must not require that the KBS be redesigned and reimplemented. An
explanation is based on the interaction of the CE with the content of the KB.
The explanation need not (and probably cannot) include the knowledge that is
embedded in the CE, since it is usually not preserved in the solution method

and is deeply buried in the system, but may include information acquired from
interaction with the user. Despite the fact that the CE's behavior is not
incorporated in the explanation, that explanation should be understood by the
user because of the knowledge about the domain that the system and the user have
in common. (This is another reason why the user should be a worker or student in
the domain.) Most KBSs provide the facility for exploring the explanation to
various Tlevels of detail.

System Development Corporation
30 June 1977 2-16 TM-5903/000/00

2.4 THE KNOWLEDGE BASE

As we have said, the Knowledge Base (KB) is a passive element of the KBS. Though

passive, the KB determines the performance and utility of the KBS, because the
CE depends on the knowledge in the KB. In this section, we describe the char-

acteristics of the KB that are common to all of the KB systems we have studied.

They do not necessarily represent the necessary and/or sufficient conditions
for a KB.

The KB of a KBS may contain both Knowledge Sources (KSs) and fact files. At
least one KS is mandatory; whether fact files are necessary depends on the
domain. The fact files that are contained in a KB are equivalent to a data
base in that they contain attribute values and the equivalent type of informa-
tion that may be required for the complete solution or result. A collection
of fact files without a Knowledge Source, as we have defined it, is not a KB.
Therefore, a system in which all of the expert domain knowledge is embedded in
the CE would not, by our definition, qualify as a KBS. A Management Informa-
tion System constructed from a conventional data-management system and a col-
lection of sophisticated application programs that provides its users with
decision-making aids, trend analyses, etc., is not a KBS.

A KS contains what we have been calling knowledge. Whether a KBS has a single
or multiple KSs results from system design decisions that are both philosophi-
cal and practical. Multiple KSs are usually necessary when there are multiple
“Jevels" of knowledge, such as problem-specific knowledge and knowledge (often
called Meta-knowledc :) about how the CE can best use the problem-specific
knowledge. Since thc two kinds of knowledge are used for different purposes,
it is reasonable to keep ti 1 in different KSs. It is also often true that
more than one kind of problem-specific knowledge is acquired from different
experts and that there is no efficient single method for representing all of
the knowledge. Since different representations are needed, separation into
separate KSs is logical.

e i o T T S I R e s i i s ' i i

r——

System Development Corporation
30 June 1977 2-17 TM-5903/000/00

A KB often contains an indication of the certainty, veracity, or credibility of
its representation of knowledge. MYCIN [SHORTLIFFE76] attaches Certainty Factors
(CFs) to each item of knowledge it contains, and its CE has a means of combining
these CFs to arrive at a certainty value for a conclusion. We have observed no
fact files in existing KBSs that contain the equivalent of CFs or other measures
of their veracity, but we see no reason why the concept cannot be readily

applied to them. It is this property of being able to cope with less than cer-
tain knowledge that imbues a KBS with its power and ability to reason

plausibly.

We cannot stress too strongly that the expert, domain-specific knowledge in the
KSs must not only represent the body of theory about the domain, it must also
contain knowledge of how to apply the theory to a given problem or class of
oreblems. This is the kind of knowledge that a person learns from working in
the domain and attaining the appellation "expert." For a variety of reasons--
efficiency of representation among them--knowledge of how to apply the theory is
often incorporated in the CE rather than in a KS.

The knowledge of the KSs in the systems we have examined is of the following

types (although the knowledge in no system included all types):

(1) Methods for specifying cause-effect relationships, implications, or
inferences, using production rules, predicate-calculus expressions,
or other logical representations, depending on the richness of the
relationship to be represented.

(2) Plans of action for how one would achieve an end result in the world
external to the model that the system represents. For instance, such
a procedure may describe how to transform one chemical compound into
another for a chemical-synthesis system, or how to purify an inter-
mediate compound. Or it may stipulate the usual l1ogical steps in
solving a problem of a particular class or type. It is the equivalent

- _ _

System Development Corporation
30 June 1977 2-18 TM-5903/000/00

of the instructions that come with a do-it-yourself kit or
unassembled toy or device, in that the user's intent, skill, and some
fundamental understanding of content are assumed.

Jdeclaratives that identify objects within the modeled domain and dis-
tinguish them from objects that are not within the domain. These
declaratives may describe properties of objects, relationships among
objects, definitions of terms or constructs, schemata that identify
the legal relationships or transformations applicable to the domain,
or first-Tevel abstractions, such as class or set memberships for

the elements of the domain.

Meta-properties, which are a higher level of abstraction about the
domain and the solution space and methods. They are not always
embodied in a KS but may be incorporated in the CE, which makes them -
less readily identifiable. They take the form of meta-rules--that is,
rules about using the knowledge in 1, 2, and 3 above. They provide
means for determining and assuring the consistency, coherency, and
reliability of intermediate results and steps as well as the final
solution and answers. They may also restrict the solution space in
various ways (such as pruning and ordering a "move" tree) that
markedly improves the efficiency of the system.

Advice (sometimes called heuristics) that is similar to meta-properties
in intent, but that does not carry the same strength of influence.
Advice may be a hint to the CE as to what knowledge is best to use
next or hco/ to escape from a possible blind alley or what is the most
likely transformation that will yield a useful result. This is the
"soft" knowledge 1at experts acquire from experience in working in

the domain and is rarely contained in textbooks and papers. It often
consists largely of intuition and has Tittle scientific or theoretical

System Develonment Corporation
30 June 1977 2-19 TM-5903/000/00

support, but is highly valuable because it is frequently the knowledge
that gives the system (and the expert) good performance.

There are a variety of techniques that have been used to represent KSs with
these characteristics. They will be described in detail in Section 4 below.

System Development Corporation
30 June 1977 2-20 TM-5903/000/00

2.5 THE INTERFACE

The interface is the communication port between the system and the external
world. As such, it provides three functions: (1) interaction with the user
(i.e., accepting input and returning results, explanations, or other output,
often in English or a stylized natural language of the domain), (2) addition of
knowledge to the KB by a domain expert, and (3) acquisition by the KB of prob-
lem data (e.g., real-time signals, a file of observations, user-provided data).
The interface must logically exist, but its actual realization may make it
difficult to identify it as a separate element because of the breadth of func-
tion it embodies. Some of its functions may be contained in the CE or be pro-
vided by the computer-system environment within which the KBS functions, or
both. The three interfaces, when examined individually, have the following
properties and underlying rationale, and perform the following functions:

(1) The User Interface should accommodate the jargon or a lexicon
specific to the domain of the KBS and may permit a "natural"
language. It provides the necessary facilities for the user as a
poser of problems and a consumer of results (answers, solutions,
termination, explanation, or whatever). It is not the port through

which expert knowledge is entered into the system, nor is it intended
to support casual, inexpert users. A KBS is analogous to an invest-
ment institution in which an interactive system provides support for
investment managers. The expert knowledge for such a system is pro- 4
vided by the "back-room" analysts (who also may be users). The users
are brokers and portfolio managers; such a system is not available to 1
to the cli nts of the institution, and would not be particularly
useful to them if it were, for a variety of reasons: their Tack of

fundamental knowledge of local jargon, house rules, government
regulations, trading procedures, etc. A system designed for clients
would be a different one if it were even feasible, and then one would
have to differentiate between the sophisticated or knowledgeable
clients and the casual ones.

: A A AN N e SN £
T — " " o -

System Development Corporation

30 June 1977 2-21 TM-5903/000/00

(2)

The Knowledge-Acquisition (Expert) Interface is used by a domain
expert (who has gained some feeling for, if not an understanding of,
the computer-science aspects of the system) as the provider of
knowledge for the KSs. In some systems, the user is able to provide
additional temporary knowledge or advice to the KSs through this
interface [KELLOGG77]. Still other systems may acquire their knowl-
edge through a quite different mechanism, such as that of Meta-
DENDRAL, which is a system that creates the KSs for DENDRAL from
observed results of spectrographic experiments. In this case, no
human agent is directly involved in providing the knowiedge to the

KSs of DENDRAL, so the interface must accommodate input of machine-
generated knowledge. Associated with the Knowledge-Acquisition Inter-
face is some means of verifying the incoming knowledge, sometimes
limited to syntax checking, but often including tests for coherence
and consistency with prior knowledge both in the KSs and the CE
[SHORTLIFFE76]. It is possible that the Knowledge-Acquisition
Interface and the User Interface use some system components in com-
mon, such as the Tanguage processor, but they are considered logically
separate. It is not usual that the CE's knowledge can be supplied,
modified, or added to through the Knowledge Acquisition Interface.

The Data Interface is more conventional than the other two. It is
similar to that of most other interactive computer systems, in that
it incorporates (1) facilities for user input of parameters and data
and responses to the system's queries; (2) the mechanism for locating
and accessing data sets, files, or data bases; and (3) a capability
for accessing real-time (or quasi-real-time) data streams. The Data
Interface of each KBS need provide for only those data sources that
are meaningful or necessary to its operation. Many of the functions
necessary to provide the Data Interface may be drawn directly from
the computer-system environment within which the KBS functions.

System Development Corporation
30 June 1977 2-22 TM-5903/000/00

2.6 SUMMARY

A KBS can, in summary, be said to be a problem-solving or pedagogic agent for
its user(s). To qualify as a KBS, a system must have: (1) a Cognitive Engine
that reasons plausibly within the domain of application, can accommodate a
mechanism for explaining the system's problem-solving behavior, and supports
the acquisition of new knowledge; (2) a Knowledge Base that contains the
Knowledge Sources and Fact Files needed to solve problems; and (3) interfaces
through which user queries, problem data, and expert knowledge can be com-
municated to the system.

System Development Corporation
30 June 1977 3-1 TM-5903/000/00

3. A KBS CASE STUDY

This section--an examination of an actual knowledge-based system, MYCIN--is
presented with two purposes in mind. The first is to provide a more detailed
view of KBS technology by examining a specific system as it relates to our
definition. The second is to encompass other related aspects of KBS technology
that are covered in more general terms in the later sections. MYCIN, a medi-
cal consultation system, was chosen for several reasons. Most improtantly,
there exists sufficient documentation about the system to perform such a
study--namely, a book and related papers [SHORTLIFFE76, 75a, 75b, 73; DAVIS77, 76].
MYCIN, in our opinion, is also the best representative system of the present
state of KBS technology. Last, but not least, it appears to have exerted sig-
nificant influence on other computer scientists involved in KBS technology
development and applications. It should be noted that this study of MYCIN is
based on the content of the available literature; we have not observed the sys-
tem in use or examined the program itself, Since this section only summarizes
the system for our specific purposes here, we encourage those interested in
more detail to read Shortliffe's book [SHORTLIFFE76].

System Development Corporation
30 June 19.. 3-2 TM-5903/000/00

3.1 TnE PROBLEM DOMAIN AND THE USERS

Before examining MYCIN's elements, we must first understand something about

the problem domain and the intended user community. Simply stated, MYCIN is

a xnowledge-based interactive computer system intended to provide advice to
physicians on prescribing antimicrobial therapy for bacterial infections. The
present version is limited to providing advice about bacterial infections of
the blood (bacteremia); the intent is to gradually broaden the system into
otner infectious-disease topics. As one would imagine, the problem of ther-
sy selection and recommendation for an infectious disease is difficult and
ccmplex. Even when restricted to bacteremia, the problem of therapy selection
poses many problems. The first is to determine whether or not the infection is

serious enough to warrant treatment. It is to no one's benefit, economically or
physically, to prescribe unnecessary drugs or other treatment, though it has been
observed to happen far too frequently. If it is determined that treatment is
warranted, there is no panacea for infectious diseases. Therefore, one should
know what organism is causing the infection, but that itself is not a simple
problem. One must obtain a specimen of the infection for culturing, analysis,
and identification by a laboratory. This is a time consuming process. It
takes from 12 to 24 hours to determine whether there is an organism and make a
preliminary identification of its general characteristics. Another 24 to 48
hours are required to obtain specific identification, and possibly even more
time to determine which specific antimicrobial drug is most effective in

eitner counteracting the organism or arresting its growth. In many cases, the
infection is serious enough that treatment must be begun before all of the
analysis can be comi leted. Therefore, any recommended therapy must be based

on incomplete information. To further complicate matters, the most effective
drug against the suspected ur identified organism may be totally inappropriate
for the specific patient because of age or medical conditions and problems.
Thus, any system or consulting physician must be aware of all of these complex-
ities if proper advice is to be rendered in each specific case. MYCIN has

been designed to cope with just such complexities and interrelationships among
the many variables and to provide a physician with advice that is proper for
each individual patient.

System Development Corporation
30 June 1977 3-3 TM-5903/000/00

Though the problem is quite complex, the domain is well bounded. MYCIN need
not have knowledge about medicine in general, or any of the many medical
specialities that have no bearing on infectious diseases. It does require
specific knowledge that relates to local experience with various infectious
organisms in terms of resistance of known strains to specific drugs, which
varies from locale to locale. It does not need general knowledge about the
theory of infectious disease, but it must have knowledge of symptoms related
to specific infections. We will explore below in more detail the specific
kinds of krowledge incorporated in MYCIN.

MYCIN is intended to be used by physicians. The dialogue that it carries on
with the user is in the jargon of medicine and specifically that of infectious
diseases, laboratory procedures, infectious organisms, drugs, etc. Thus, a
user is expected to be a competent medical practitioner.

System Development Corporation
30 June 1977 (e 3-4 TM-5903/000/00
®

3.2 MYCIN'S KNOWLEDGE BASE

MYCIN's knowledge base (KB) contains several knowledge sources--decision rules
(or production rules), clinical parameters, special functions, and procedures
for therapy selection. We will briefly describe the content and purpose of
each and indicate the method of representation for each. Detailed descriptions
of these and other representational techniques are contained in Section 4.

Tne primary knowledge source in MYCIN is the collection of decision, production,
- situation-action (SA) rules. Most of the other knowledge in the system

r=.ates to the use or evaluation of the rules. Each rule consists of a

Premise, which may be a condition or a conjunction of conditions, an Action

-~ pe taken, and sometimes an Else cliause. For the action to be taken, each

of tne conditions in the Premise must hold. If the truth of the Premise can-

not be ascertained or the Premise is false, the action in the Else clause is

taken if one exists; otherwise, the rule is ignored. In addition, the strength

of each rule's inference is specified by a certainity factor (CF) in the range

-1 to +1. (CF's will be discussed below under the topic of the cognitive

\

ine.) Each rule in MYCIN falls into one and only one of the following
(i) rules that may be applied to any culture,
(2, rules that may only be applied to current cultures,

'3) rules that may be applied to current organisms,

{4) rules that may be applied to any antimicrobial agent administered to
combat a <necific organism,

(5) rules that may be applied to operative procedures,

(6) rules that are used to order the list of possible therapeutic
recommendations,

(7) rules that may be applied to any orgenism,

(8) rules that may be applied to the patient,

S

System Development Corporation
30 June 1977 3-5 TM-5903/000/00

(9) rules that may be applied to drugs given to combat prior organisms, ;
(10) rules that may be applied only to prior cultures,

(11) rules that may be applied only to organisms isolated in prior cultures,
(12) rules that store information regarding drugs of choice. f

One can readily infer from these categories both the scope of MYCIN's know-
ledge embodied in rules and the intent of that knowledge. Each one of these
categories is in turn related to one (or at most two) of the ten "contexts"

with which MYCIN must deal in its reasoning processes. The ten contexts and

the creation of the system's context tree will be discussed below under the

cognitive engine.

The system also contains a collection of clinical parameters, represented as

attribute, object, value> triples. These clinical parameters specify the
crnaracteristics of the various contexts that appear in the context tree. The

E parameter: are of three fundamentally different kinds: single-valued, multi-
| valued, and binary (a special case of single-valued with only two possible
values, yes or no). These clinical parameters fall into six categories:

(1) attributes of cultures, (2) attributes of administered drugs, (3)
attributes of operative procedures, (4) attributes of organisms, (5) attri-
butes of the patient, and (6) attributes of therapies being considered for
recommendation. Each of the parameters has a certainty factor reflecting the
system's "belief" that the value is correct and an associated set of proper-
ties that is used during consideration of the parameter for a given context.
Tnese properties specify such things as the range of expected values a prop-
erty may have, the sentence to transmit to the user when requesting data from
him, the 1list of rules whose Premise references the parameter, the list of
rules whose Action or Else clause permits a conclusion to be made regarding
the parameler, etc. Only those properties that are relevant to each parameter
are associated with it. However, properiy specifying how the parameter is to
be represented in English is mandatory for all.

CR— ——

System Development Corporation
-J June 1977 3-6 TM-5903/000/00

fcoitional information is contained in simple lists that simplify references
sariables and optimize knowledge storage by avoiding unnecessary duplication.
“sts contain such things as the names of organisms known to the system
ana tne names o7 normally sterile and non-sterile sites from which organisms
are isolated.

In conjunction with a set of four special functions, MYCIN uses knowledge
tables to permit a single rule to accomplish a task that would otherwise
require several rules. The knowledge tables contain a record of certain
clinical parameters and the values they may take on under various circumstances.
One such table contains the gramstain, morp'ology, and aerobicity for every
pacterial genus known to the system.

This constitutes the majority of MYCIN's knowledge base, which permits the
system to comprehend the nature of an infection without complete information
bout the organism involved and provide the physician with proper advice
~egarding treatment under the circumstances. This organization and structure,
aleng with the way the knowledge is used, facilitates the system's ability to
explain its actions and advice.

There is one knowledge source in MYCIN that is not represented by any of the

above, but is implemented as a set of functions. This is the knowledge

required for choosing the apparent first-choice drug to be recommended.

Because of the manner in which this knowledge is incorporated in the system,

its ability to explcin how the selection was made is inadequate. Ways for |
representing this kr wiedge as decision rules are being studied at this time. ‘

System Development Corporation
30 June 1977 3-7 TM-5903/000/00

3.3 MYCIN'S COGNITIVE ENGINE

The following description of MYCIN's cognitive engine is somewhat simplified,
but it retains the essential flavor. MYCIN's ccgnitive engine is domain
independent in the sense that none of the knowledge required to provide advice
about bacteremia is embedded in it. Thus, additional rules concerning infec-
tious disease may readily be added, or a new knowledge base could be substi-
tuted to provide therapeutic advice about a different domain of infections.

It is possible that this CE could be applied to domains completely outside
medicine, and it is said that this has been done. But it does not follow

that MYCIN's CE is universal enough to be usable in any knowledge-based system.

The task that MYCIN performs, under the controil of its CE, can be characterized
as a four-stage decision process:

(1) decide which organisms, if any, are causing significant disease;
(2) determine the likely identity of the significant organisms;

(3) decide which drugs are potentially useful,

(4) select the best drug or drugs.

A consultation session between a physician and MYCIN results from a simple two-
step procedure:

(1) Create the patient “context" as the top node in the context tree.
(2) Attempt to apply the "goal-rule" to the newly created patient context.

The "goal-rule" is one of the rules from the category of those that may be
applied to the patient (as described above), and states:

If there is an organism that requires therapy and
consideration has been given to the possible existence of additional
organisms requiring therapy, even though they have not been recovered
from any current cultures,

: System Development Corporation
30 June 1977 3-3 TM-5903/000/00

then do the following:

Compile a list of possible therapies which, based upon
sensitivity data, may be effective against the organisms
requiring treatment and

determine the best therapy recommended from the complied list;

otherwise, indicate that the patient does not require therapy.

This rule obviously embodies the tasks of the four-stage decision process
given above.

The two components or programs that constitute MYCIN's CE are called MONITOR
and FINDOUT. MONITOR's function is to determine whether the conditions stated
in the Premise of a rule are true. To do so, it considers each condition of
the Premise at hand, first determining whether it has all of the necessary
information to make the determination. If it requires information, it calls
FINDOUT to obtain what is needed. FINDOUT first determines whether the needed
information is laboratory data. If it is, it asks the physician for it. If
the physic¢ian cannot provide it, FINDOUT retrieves the 1ist of rules that may
aid in deducing the information and calls MONITOR to evaluate the rules.

When the process completes, control is returned to MONITOR. If the information
needed is not laboratory data, FINDOUT retrieves the list of rules that may aid
in deducing the needed information and calls MONITOR to evaluate the rules. If
the deductive process of applying the rules (backward from a goal to the data
or information needéd) cannot provide the needed information, the physician is
asked to provide it. In either case, control is returned to MONITOR. Given
the information that is provided by FINDOUT or that was already available,
MONITOR determines whether the entire Premise is true. If it is not, and

there is no Else clause, the rule is rejected. If the Premise is true or the
Else clause is invoked, the conclusion stated in the Action of the rule or in
the Else clause is added to the ongoing record of the consultation, and the
process completes. Note that there is a recursive relationship between

MONITOR and FINDOUT, such that so long as any information is needed to

System Development Corporation
30 June 1977 3-9 TM-5903/000/00

evaluate a Premise, or rules are required to develop the needed information,
the two components are in a recursively dependent and oscillating relationship
until the very first rule invoked, the "goal-rule", is satisfied. In the
process of evaluating the rules, a great deal of related and necessary infor-
mation and data are developed and retained in various tables and structures in
the workspace. They serve two purposes: (1) they prevent wasted effort that
would be required to redevelop information that has already been obtained, and
to prevent the system from endlessly chasing its tail; and (2) they provide
the necessary history required for the explanations that may be requested by
the user.

In addition to having certainty factors (CFs) for the rules and the clinical
parameters in the knowledge base, the physician, when asked for either labora-
tory data or other information that the system itself cannot deduce, may

attach a CF to his input. The default, if the physician does not provide a CF,
is assumed to be +1. The certainty factors are the key to permitting MYCIN to
perform inexact reasoning. The rationale, mathematics, and application are
thoroughly treated in [SHORTLIFFE76] and we will provide only the barest sketch
here.

A certainty factor (CF) is a number between -1 and +1 that reflects the degree
of belief in a hypothesis. Positive CFs indicate that there is evidence that
the hypothesis is valid; the larger the CF, the greater the degree of belief.
A CF=1 indicates that the hypothesis is known to be correct. A negative CF
indicates that the hypothesis is invalid; CF=-1 means that the hypothesis has
been effectively disproven. A CF=0 means either that there is no evidence

regarding the hypothesis or that the evidence is equally balanced. The hypothe-
ses in the system are stateients regarding values of clinical parameters for the

nodes in the contex*® tree. To properly perform, MYCIN must deal with competing
nypotheses regarding the value of its clinical parameters. To do so, it stores
the 1ist of competing values and their CFs for each node in the context tree.

Positive and negative CFs are accumulated separately as measures of belief (MB)

A

System Development Corporation
30 Jure 1977 3-10 TM-5903/000/00

ana measures of disbelief (MD) and added to form a resultant CF for a clinical
cirameter. The CF of a conclusion is the product of the CF of the rule that
;en rated the conclusion and the tally of the CFs of the clinical parameters
“na . were used in substantiating the conclusion. When a second rule supports
trie came conclusion, the CFs are combined by z=x+y(1-x), where x is the CF of
tne “irst supporting rule, y is the CF of the succeeding rule and z is the
resuitant CF for the conclusion. The CFs permit the system to report findings
to the pnysician with varying degrees of certainty such as, "There is strongly
suggestive evidence that...," "There is suggestive evidence that...," “There is
weakly suggestive evidence that...," etc.

The context tree has been mentioned several times above. A brief explanation
of it is in order here. The topmost node in the tree is always the patient.
8ranches are added successively to the existing nodes as FINDOUT discovers a
need for them in attempting to obtain requested information for MONITOR. Thus,
given only the patient, when MONITOR requests information from FINDOUT about
orgenisms in order to evaluate the first condition in the Premise of the
goai-rule, FINDOUT discovers that it cannot get organism information without
naving information about cultures. Thus, context(s) concerning culture(s)

s spawned from the patient node, from which eventually are spawned contexts
Tor the organisms identified by the cultures. For those organisms deemed
significant, links attach to context nodes about the relevant drugs for treat-
ing these organisms. Thus, the context tree is tailored for each patient as
the system progresses through its reasoning process.

MYCIN's cognitive en ine is relatively simply yet quite powerful in that it
performs both efficientiy and quite effectively in conjunction with the know-
ledge base in providing advice on bacteremia as judged by an independent panel
of physicians (among whom, it was noted, there was some disagreement on what
the proper therapy should be 1n each of the cases discussed).

System Development Corporation
30 June 1977 3-11 TM-5903/000/00

3.4 MYCIN'S EXPLANATIONS

One of the primary design consideration taken in MYCIN was the requirement that
the system be able to explain its decisions if physicians were going to accept
it. Selecting rules as the representation of the system's knowledge greatly
facilitated the implementation of this capability. The physician using the
system enters the explanation subsystem automatically when the consultation
phase is completed, or he may enter it upon demand during the consultation
session at any point at which the system requests input from him. In the latter
case, he can input "WHY" to request a detailed answer about the question just
asked of him or he can input "QA" to enter the general question-answering expla-
nation subsystem to explore the decisions and other aspects of the consultation
up to the point of divergence.

The explanation provides several options to the physician. Since the system
automatically (having rendered its advice) enters this mode at the end of the
consultation, the physician may simply input "STOP", which terminates the
system. He may input "HELP", which provides him with the 1ist of explanation
options, which include:

Input Option
EQ Explain a specific question asked of the physician

during the consultation--each has a sequence number,

which must accompany the EQ request.

PR Requests a particular rule be printed and must be
followed by the rule number.

1Q Is a prefix for a question about information
aquired by the system during the consultation.
The question is phrased in the limiced English that
MYCIN can handle.

no -refix A general question is assumed being asked about the
content of MYCIN's rules.

System Development Corporation
30 June 1977 3-12 TM-5903/000/00

Thus, the physician can ask to have Question 48 explained by inputting "EQ48".
To which the system would respond: 48 QUESTION 48 WAS ASKED IN ORDER TO FIND
OUT THE PATIENT'S DEGREE OF SICKNESS (ON A SCALE OF 4) IN AN EFFORT TO EXECUTE
RULEO68. He may then optionally input "PR68" or "WHAT IS RULEQ68" to see what
exactly was being sought and why.

One shortcoming of the explanation system is the requirement of prefixing
questions related to information acquired by the system by "IQ" to distinguish
them from the general questions about the rules. Both are dealt with by MYCIN's
simple language processor (chosen as a compromise between the need for efficient
computation to minimize response time and expressive power in posing questions).
[t is unclear, particularly to the novice user, when the prefix is needed. The
designers are exploring ways of dispensing with the requirement.

On balance, the present explanation system (enhanc2ments are being planned)
strikes a proper balance between the needs of the users and the ability to
meet those needs without unduly complicating the system or overburdening the
available computing resources.

System Developing Corporation
30 June 1977 3-13 TM-5903/000/00

3.5 MYCIN'S INTERFACES

The present system incorporates two interfaces. One is for the using physician,
through which he may answer questions posed by the system and ask questions of
it; the other is a knowledge-acquisition interface accessible only to experts
recognized as such by the system.

A11 of the questions asked of the user have been carefully designed not to
require the language-understanding component. Thus, instead of asking, "What
is the infectious disease diagnosis for fhe patient?" it asks, "Is there
evidence that the patient has a meningitis?" To which only a simple "yes" or
"no" (with the possible addition of a CF) is required.

The knowledge-acquisition interface, on the other hand, permits the expert to
input a new rule in stylized English, with prompting to obtain the rule in the
proper sequence: Premise first, condition by condition, followed by the Action,
and then an Else clause if one is required. The system then translates the
rule into internal form, reordering the conditions of the Premise if necessary,
according to a set of criteria developed to improve the rule-evaluation process.
[t then retranslates the rule into English and requests that the expert decide
whether the rewritten version was the one intended. If not, the expert may
modify selected parts and is not required to restate the entire rule unless
there has been a gross misunderstanding.

The same mechanism is used when an expert wants to correct or modify an exist-
ing rule. In all cases, when a new or corrected rule has been approved by the
expert, the system checks to see whether the rule is consistent with the exist-
ing rule set. These consistency checks are not as complete as’they might be.
If the new or modified rule subsumes or is subsumed by an existing rule, it

is not readily discoverable, and no test is made for this condition. 1If a

rule is discovered to be in conflict with an existing rule, it is rejected.
(The designers believe that it may be possible to accommodate these conflicts

by storing conflicting rules separately and asking the user--if the situation

B e e

System Development Corporation
30 June 1977 3-14 TM-5903/000/00

arises--which of the two rules was about to be invoked, that is, which expert's
coinion is favored. Once a rule is accepted, all of the tables and properties

that need to refer to it are updated, since, in converting the rule to internal
form, the system determined which category it belonged in and which context it

related to.

The user and expert interfaces appear to have been well thought through and
provide a useful and civil interface to the appropriate user within the
lTimitation imposed by the present state of the art. The designers realize

that more can be done as technology develops and are actively pursuing those
ends.

System Development Corporation
30 June 1977 3-15 TM-5903/000/00

At s bt i

3.6 DESIGN CONSIDERATIONS FOR MYCIN

Before the actual design of the specifics of the system were undertaken,

several conditions were satisfied. It was first established that there was a
need for such a system (and an inference that, if such a system came into being,
it would be accepted by the intended users). The need was verified by observa-
tion of the present state of medicine in its application of antimicrobials to
infectious diseases. It was being overdone--far too many drugs were being
prescribed too frequently. It was not being done well, too many broad-spectrum 4
drugs were prescribed when more specific less toxic drugs were available, and an
inappropriate drug was being prescribed far too frequently.

Next, it was established that the chosen domain was well bounded and that
there were motivated experts who would cooperate in the design process and
provide the expert knowledge required by such a system. Given this starting
point, it was determined that the system must possess the following six
characteristics:

(1) The system should be useful. There must be a need for the

assistance provided by the system. The advice given should be

reliable; the system must be human engineered for usability by

its intended user population.

(2) The system should be educational when appropriate. The system should

not overburden the user with information he may not want, but it
should be instructive when responding to a user's informational
requests. It shouid provide sufficient information so that, over
time, the physician may need to consult the system only in excep-
tional cases.

o

; The system should be able to explain its advice. It is observed that

—

ohysician acceptance will, to a great degree, be dependent upon whether
"ot he is satisfied, not only with the specific advice rendered,
ou. oy the system's justification for that advice. The physcian will

not accept a dogmatic replacement for his own decisions.

System Development Corporation
30 June 1977 3-16 - TM-5903/000/00

(4) The system should be able to understand questions. If the system is

to explain its advice, then it must do so in response to questions.
Hardly any physician will bother himself to learn a formal or arcane
language by which he could extract explanations. Therefore, a
natural-language facility, albeit limited, is mandatory.

(5) The system should be able to acquire new knowledge. HNot only is it

hardly conceivable that one could incorporate all of the knowledge
the system would ever need at its inception, but in a continuously
changing world, new knowledge and insights are constantly developing.
Thus, if the system is to remain current with the state of knowledge
and grow in reliability and performance, it must be able to incorpo-
rate new knowledge. Further, some errors are bound to occur, and the
erroneous knowledge must be changed or replaced.

(6) The system's knowledge must be easily accessed and modified. This

requirement not only sets criteria for providing the user with the
content of the system's knowledge, it sets criteria on how the knowl-
edge is to be represented, in terms of how the representation

matches the knowledge that the expert uses and how he conceives it.
Thus, there should be a good match between the amount of knowledge
that can be represented in one unit and the way that it is expressed.

From those design consideration were developed a more detailed set of speci-
fications and requirements that eventually led to construction of the present
version of the system. In hindsight, some of the decisions and tradeoffs

were less than optii:1, but that is usually the case in most new ventures. The
project that developed MYCIMN continues and is reviewing the original considera-
tions and design decisions, with the goal of refining the system to come as close
to the ideal design as possible.

Yo Al SR A 3 A 5 e 2

System Development Corporation
30 June 1977 3-17 TM-5903/000/00

3.7 SUMMARY

It is reasonable to conciude that MYCIN was well conceived and met the majority
of its initial requirements. It has yet to be used by the ultimate users for
whom it was designed, the doctors in the hospital wards. That will eventually
provide validation or rejection of the various assumptions put forth related

to specific functional capabilities and the impact of such a system on the
practice of medicine.

The two most obvious shortcomings (improvements are presently being sought for
both) are embedding the therapy-selection process in functions that severely
inhibit explanation of their results and the requirement that the user label
certain questions -with an identifying prefix. In this sense, MYCIN is not an
ideal system, but in all other respects it is one of the best existing examples
of a well-done knowledge-based system.

System Development Corporation
30 June 1977 4-1 TM-5903/000/00

4. TECHNIQUES USED TO CONSTRUCT KBS

This section may be skipped by the reader who does not wish to read a detailed
account of the technologies used to construct a KBS. However, Section 3, A
Case Study, is highly recommended reading in order to obtain the flavor of a
KBS by examining one particular system, its capabilities, usage, and engineer-
ing, in depth.

The purpose of this section is to introduce the reader to the techniques and
methodologies. used to construct problem solving knowledge-based systems. (KBS).
: Because of thg many and striking similarities between these systems and Com-
J puter Assisted Instruction (CAI) KBS in particular and Artificial Intelligence
(AT) systéms in general, techniques used in the latter two groups are also
covered herein; these techniques are components of the "parts kit" from which
the next generation of KBS will be constructed. In addition to AI, several
other computer science areas have developed techniques that are used in the
construction of KBS. A partial list of the major contributions are summarized
in Table 4.1. The list of contributors and techniques is necessarily long,
because the complexity and diversity of tasks performed by a KBS require the
utilization of many different methodologies.

The following subsections discuss KBS technologies grouped according to func-
tion. Section 4.1 describes the methods used to represent the knowledge con-
tained in the Knowledge Sources (KS). Section 4.2 describes the methods used
to model and represent the work-space--the dynamic state of a system during
its problem-solving activity. Section 4.3 describes techniques that are used
to construct Cognitive Engines (CE). Section 4.4 describes the techniques
ised to build the interface between the KBS and the user.

some overlap in the material covered in sections 4.1-4.4 because the
CrGice of a particular technique in one area strongly affects and Timits the
availabie cnoices in tne other areas. This effect is shown in Figure 4.1. On
zne Jeft are shown limiting influences from the domain in which the KBS is to

30 June 1977

4-2

TABLE 4.1 ORIGINS OF KBS TECHNIQUES

System Development Corporation

TM-5903/000/00

ARTIFICIAL INTELLIGENCE (AI)

hueristic search

inference and deduction

pattern matching

knowledge representation and acquisition
system organization

LANGUAGE PROCESSING

parsing and understanding
question and response generation
knowledge representation and acquisition

THEORY OF PROGRAMMING LANGUAGES

formal theory of computational power
control structures

data structures

system organization

parsing

MODELING AND SIMULATION

representation of knowledge
control structures
calculation of approximations

DATA BASE MANAGEMENT

information retrieval
updating
“ile organization

SOFTWARE ENGINEERING
system organization
documentation
iterative system development

APPLICATION AREAS

domain-specific algorithms
human engineering

System Development Corporation
TM-5903/000/00

30 June 1977 4-3
Available KB
Knowledge > R tati
Model epresentation
Expert CE
Reasoning —
Principles Methodology
User . Explanation
Expectations Methodology

Workspace
Representation

Note: Read a —= [as ""Choice of a Restricts Options in Choice of 3 *'

Figure 4.1

Restrictions on Choices of KBS Methodologies

System Development Corporation
30 June 1977 4-4 TM-5903/000/00

perform--namely, the expert's available knowledge model, the expert's
reasoning principles and methods, and the users' expectations for the system.
These three domain-specific items constrain the selection of the techniques
and the methods to be used in the KBS for representing the KB, the CE, and the
explanation-generation mechanism. The diagram represents our perception of
the relative importance of choice in a KBS. The most important influences are
domain considerations followed by choice of a KB representation. Everything
else is of less importance. The ordering of importance is reflected in the
KBS literature and sets that literature apart from the corresponding Titera-
ture for Artificial Intelligence. In the latter field, the most important
considerations are CE methodology and workspace representations, followed by
KB representations. Domain considerations are of relatively minor importance.

I¢ would be extremely valuable to provide here a comparison of techniques and
methods. However, such a comparison is difficult to provide for a number of
reasons. The most important is that there does not exist a reasonable taxo-
nomy (nor have we been able to invent one) on which to base it. Another
difficulty arises because of the contraints discussed above--namely, choices
are limited by domain-specific considerations as well as technical incompati-
bilities. In a sense, a technigal option is good or bad as it is natural to
the domain. Thus, relative merit is as much a domain as a computer-science
based measure. Where possible, the following sections attempt to make com-
parisons based upon abstract features of the various techniques. However, the
ultimate comparisons can be made only in the context of a particular domain
and problem.

System Development Corporation
30 June 1977 4-5 TM-5903/000/00

4.1 KNOWLEDGE REPRESENTATION

The knowledge base in a KBS consists of one or more knowledge sources and may,
in addition, contain fact files. Fact files are collections of hard data such
; as values and attributes, e.g., the contents of an engineering handbook or its
equivalent. A knowledge source contains an expert's knowledge about the appli-

cation area--knowledge such as definitions, cause-and-effect correlations,
descriptions of plans and procedures, abstractions, problem-solving strategies,
and meta rules governing the use of the contents of other knowledge sources
(and fact files) in the system and plausible reasoning in the domain. The
purpose of this section is to characterize and describe knowledge sources and
the techniques and methodologies used to represent them in a computer. In
section 4.1.3, an attempt is made to compare the various techniques.

The following references should be of interest to anyone desiring a deeper

introduction to the general topic of knowledge and its representation.

(Citations are provided throughout the rest of section 4.1 for the techniques

now in wide use.) We would be remiss if the only literature we mentioned was

from the computer-science community; therefore, we take this opportunity to

Tist a few writings outside the fieid that are of major historical importance. ;
!.

[BLOOM56] attempts to describe and provide a taxonomy of intellectual functions. |

t is summarized in Appendix A. ' i
S

The Greek philosopher, Plato, put forward his theory of forms to establish an

epistemology of definitional knowledge that generally resembles a basis for

semantic networks. See, in particular, "The Phaedrus", "Parmenides", "The
Republic", and "Theaetetus".

Another ancient Greek philosopher, Aristotle, developed and organized the con-
cepts of a predicate calculus and its proper methods of application in dis-
courses about philosophy, ethics, and law. The particular works of interest
are "Posterior Analytics" and "Metaphysics", Book 4.

System Development Corporation !
30 June 1977 4-6 TM-5903/000/00

[FREUD 60 and 55] describe a theory of cognitive economy and propose it as an
explanation of many intellectual functions.

ANt A et Yl S

In [BARTLETT 32], a theory is put forth of necessary ingredients in any expla-
nation of human recall and reasoning processes. This work has been cited by
many as the psychological basis for frames.

Some general overview and opinions about knowledge representation from the com-
puter science literature are to be found in [BOBROW 75b and 75c], [BROWN 75b],
"CHARNIAK 75], [COLLINS 76], [HAWKINSON 75], [MOOREJ 73], [SIROVICH 72], and
"HEISS 61].

System Development Corporation
30 June 1977 4-7 TM-5903/000/00

4.1.1 Characteristics and Terminology of Knowledge Sources

4.1.1.1 Knowledge Representation Forms

A knowledge source may assume several different forms of representation through
a KBS. The domain expert imparts new knowledge to the knowledge acquisition
mechanism in the external form. The acquisition mechanism transforms or com-
piles the external representation into the physical form and merges the new
knowledge into the appropriate KS. The physical form is a data structure such
as a matrix, list, or n-tuple, or a procedural representation, or some combina-
tion of these forms. When another component of the system (such as the CE)
accesses the KS, the logical form is used at the interface. The logical form
is generally functional and in terms of symbolic keys or indices; that is, it
defines the set of questions that can be answered immediately by the KS. The
power available at the logical interface is determined by the external form of
the knowledge and the amount o7 compilation performed by the acquisition mech-
anism. Finally, knowledge is transformed back into the external form when the
system provides explanations to the user. Normally, the input form and expla-
nation form of the knowledge are the same or similar except when the input form
is highly abbreviated or nontextual. Figure 4.2 summarizes the transformations
of knowledge representations throughout a KBS.

4.1.1.2 Knowledge Chunks

Both the external and logical knowledge représentation format are partially
characterized by the term chunk size. A knowledge chunk is a primitive unit in
the representation--that is, in a KS that contains the definitions of several
interrelated terms, the definition of a single term is a "chunk". Unless the

knowledge-acquisition mechanism compiles incoming chunks by combining them, the
chunk size of the external and physical representations will be approximately
the same. In the case of combination by the acquisition mechanism, the chunk
size of the logical representation will be greater.

System Development Corporation
30 June 1977 4-8 TM-5903/000/00

Knowledge-
Acquisition
Mechanism

/\ External
E

xpert

External

User
Inference

Figure 4.2 Knowledge Representation Forms

System Development Corporation
30 June 1977 4-9 TM-5903/000/00

The concept of a knowledge chunk is important in describing a KBS because it

‘ determines the basic unit (or arain) of behavior. The knowledge chunk is the
‘ unit by which the expert augments (or modifies) the KS. The simplest action
that can be taken by the CE is to apply or use a single chunk. Therefore, the
most primitive explanation of system behavior is a presentation of the chunk
form which the behavior resulted.

Chunk size is an inexact and, at best, a relative measure. For certain types
of knowledge, the chunk size could be defined as the information-theoretic
entropy. (See [SHANNON 49].) However, for the kinds of knowledge required to
be in a KBS, computation of entropy is not a practical possibility. (From a
theoretical standpoint, it is not clear even what is meant by entropy for many
types of knowledge found in a KBS, e.g., definitions and rules of plausible
inference.) However, in spite of inexactness, chunk size of knowledge is an
important consideration to KBS technology for three reasons:

1. It determines the level at which the expert can instruct the system.
If the chunk size is either too large or too small, the expert is
forced into an unnatural mode of expressing his knowledge.

2. It in part determines the acceptability of the system's explanation
mechanism. Since the knowledge chunks used to derive and support the
system's conclusions form the essential part of explanations, accepta-
bility is enhanced when the chunks are the same size or level of
detail used by one worker in the application field describing results
to another worker in the same field.

3. It determines the kinds and efficiency of reasoning techniques to be

used in the KBS. Larger chunk sizes generally permit shorter lines of
reasoning. For that reason, they are more likely to lead to a correct
conclusion when inexact but plausible inference techniques are used.

These three influences of chunk size all suggest the advantages of a coarse-
grained knowledge source. In fact, the most successful KBS and AI systems tend
to be characterized by large chunk sizes. The representation techniques used in

System Development Corporation
30 June 1977 4-10 TM-5903/000/00

most of the early Al systems were predicate calculi and semantic nets; in
today's systems, these representations are gradually being replaced by produc-
tion rules and frames. The continuance of the trend towards large chunks, along
with the ability of a KBS to use inexact but plausible reasoning techniques,
will result in systems that are capable of intelligent perfromance as measured
by even the strictest standards.

4.1.1.3 Credibility Factors

A1l of the knowledge in a KS need not be true in an axiomatic sense; in fact,
it is unclear that a KBS would be necessary or appropriate for use in a domain
in which axiomatic knowledge is available. Much of the content of a KS may be
"rules of thumb" and working hypotheses. This raises the issue of how a system
is to use knowledge of this sort to product acceptable results. The CE, as the
reasoning component in the system, has the major responsibility in this area.
In many KB systems, the chunks in the KS are rated as to their credibility by
the experts who entered them into the system. This rating is then available to
the CE as a guide in the reasoning process.

Besides credibility factors for individual kncwledge chunks in a KS, credibility
factors can occur in other contexts in a KBS--for example, the input problem
parameters may not be known with certainty. (Another case occurs when knowledge
chunks are combined with each other and with the problem-specific parameters:
given the credibility factors of the parameter values and of the knowledge
chunks that have been used, what is the certainty of the conclusion?)

There are at least tfour possible meanings or interpretations of credibility
factors:

1. A probability: the fraction of the time that the chunk is true.

2. Strength of belief: how certain is the expert that the chunk is
always true?

.

System Development Corporation
30 June 1977 4-11 TM-5903/000/00

3. Relevance: what is the probability that use of this chunk will
ultimately lead to a completed chain of reasoning that solves the
problem at hand?

4. Acceptability: is this a preferred method (a matter of taste) or
fact to workers in the field?

It is essential that the kind of credibility factor that is to be used be

stated and agreed upon by the expert who instructs the system and by the pro-
grammer who builds the CE, because the mathematics for combining and evaluating |
each of the four kinds is different. ‘

A good discussion of credibility factors, including some mathematical deriva-
tions and justifications of the technique used in MYCIN can be found in
[SHORTLIFFE 76]. An approach, called "fuzzy logic" is described in [ZADEH 75,
74, and 65] and [GOGUEN 68]. A theory of “confirmation” is described in
[CARNAP 50], [HEMPEL 45], and [HARRE 70]. A theory of choice is described in
[TVERSKY 72] and [LUCE 65]. Also see [TORNEBOHM 66] for a description of
criteria that should be met by a choice function.

4.1.1.4 Declarative versus Procedural Representations

Tnere are three different but often confused dichotomies for representing knowl-
edge in computer-based systems: (1) data versus program, (2) active versus
passive, and (3) declarative versus procedural. The first data versus program,
is at best intuitive and depends upon the evaluator's viewpoint; for example,
consider an interpreter-based program-language system: a program written in
that Tanguage is data from the standpoint of the interpreter.

The second dichotomy, active versus passive, is really not a knowledge-
representation issue. Rather, it is a question of control regime and what
system component(s) is (are) responsible for instantiation and activation. An
active component is always instantiated and may instantiate and control the
activation of other components. In other words, an active component is a

System Development Corporation
30 June 1977 4-12 TM-5903/000/00

logistics manager for the available set of program counters. A passive
component is one that may operate only at the behest of a more active component.
Therefore, active and passive are the endpoints on a (partially) ordered scale
of activity. The importance of the active-passive distinction to KB system
technology is that, in general, the CE is the only active component in the
system, and each KS is strictly passive with respect to all non-KB components
in the system. This is true even when the chunks in a KS are programs, since
they are operated only by the CE. Even when a KS provides heuristic directions
to the CE about what to do next, the CE (through some sort of agenda mechanism)
still makes the flow-of-control decisions and is ultimately responsible for
resolving potential conflicts from the advice. That this is the case follows
from the logical separation of the CE and KB.

The third dichotomy, declarative versus procedural,* is really the computer
scientist's version of the epistemologist's know what and know how distinction.

It may be argued successfully that (1) there is no strictly formal difference
in the power of the two--they are both "universal'--and that (2) both are
necessary. However, the real issue is the attitude towards the management of
compiexity of the interrelationships among knowledge chunks. A proponent of
procedural respresentation argues that a major part of intelligent behavior is
the ability to apply specialized rules to exploit situation-dependent relation-
ships among knowledge chunks. Hence, he believes that many of the ad hoc inter-
relationships should be made explicit and that procedures are the best way to

do this. On the other hand, an advocate of declarative representations beiieves
that parsimony is (7> most desirable goal for knowiedge representation, and that
this is best accomp sned using reasonably modular and independent knowledge
chunks that are combined b, a general~purpose reasoning mechanism to produce

the desired results through inference and deduction.

*The remainder of section closely follows _WINOGRAD 75].

System Development Corporation
30 June 1977 4-13 TM-5903/000/00

An example may help to clarify some of the issues involved. A declarative
representation of the statement, "Al1 Chicago lawyers are clever" could be

¥(x) [CHICAGOAN(x) & LAWYER(x) =s= CLEVER(x)]

A general reasoning mechanism could use this single fact for many purposes.
For instance, to answer the question, "Is Dan clever?", it would check to see
whether Dan is from Chicago and is a lawyer. The same fact could also be used
to infer that Richard is not from Chicago, given the information that he is a
stupid lawyer. The property of being able to use the same chunk for many
purposes, as in this example, is called reversibility. In a strictly proce-

dural representation, the fact would need to be represented differently for
each of the many possible usages. Each would demand a specific form, such as
"If you find out that_;omeone is a lawyer, check to see whether he is from
Chicago, and if so, assert that he is clever". It is not possible to show a
simple example demonstrating a clear advantage of a procedural representation,
because the value of a procedural representation lies in the complex cases in

which interaction of many pieces of knowledge are involved. (However, see
Section 4.1.2.2.)

Intelligent systems can be constructed to operate in complex domains only if
they incorporate substantial bodies of both know-what and know-how knowledge.
Hence, both declarative and procedural knowledge must be present. One way of
accompiishing this is called procedural attachment; it is used in the emerging
theory of frames, as well as in some production systems (see section 4.1.2.2).
The basic concept underlying procedural attachment is that most knowledge should
be expressed declaratively (as a data structure) and should permit the optional
association of programs with the knowledge chunks and/or the data items within
the chunks. The CE executes these proarams whenever the knowledge associated
with them is referenced. The programs can perform local inference, detect
inconsistencies, and give the CE advice on what to do next.

System Development Corporation
30 June 1977 4-14 TM-5903/000/00

The major topic of this section has been viewpoints on dealing with complexity
in knowledge-based systems. Simon (see [SIMON69]) addresses many of the same

issues through what he calls "nearly decomposable systems": "...the short-run

behavior of each of the component subsystems is approximately independent of
1 the short-run behavior of the other components....In the long run, the behavior
' of any one of the components depends in only an aggregate way on the behavior
of the other components." Winograd (op. cit.) goes on to comment at some
length on this remark:

One of the most powerful ideas of modern science is that many complex
systems can be viewed as nearly decomposable systems, and that the
components can be studied separately without constant attention to
the interactions. If this were not true, the complexity of real-
world systems would be far too great for meaningful understanding,
and it is possible (as Simon argues) that it would be too great for

them to have resulted from a process of evolution.

In viewing systems this way, we must keep an eye on both sides of
the duality--we must worry about finding the right decomposition, in
order to reduce the apparent complexity, but we must also remember
that "the interactions among subsystems are weak but not negligible".
In representational terms, this forces us to have representations

which facilitate the "weak interactions".

If we Took at ~ur debate between opposing epistemologies, we see two
metaphors at o, 20site poles of the modularity/interaction spectrum.
Modern symbolic mathematics makes strong use of modularity at both a
global and a local level. Globally, one of the most powerful ideas
of logic is the clear distinction between axioms and rules of infer-
ence. A mathematical object can be completely characterized by
giving a set of axioms specific to it, without reference to proce-
dures for using those axioms. Duaily, a proof method can be

System Development Corporation
30 June 1977 4-15 TM-5903/000/00

described and understood completely in the absence of any specific
set of axioms on which it is to operate. Locally, axioms represent
the ultimate in decomposition of knowledge. Each axiom is taken as
true, without regard to how it will interact with the others in the
system. In fact, great care is taken to ensure the logical indepen-
dence of the axioms. Thus a new axiom can be added with the guar-
antee that as long as it does not make the system inconsistent,
anything which could be proved before is still valid. In some sense
all changes are additive--we can only "know different" by knowing

more.

Programming, on the other hand, is a metaphor in which interaction is
primary. The programmer is in direct control of just what will be
used when, and the internal functioning of any piece (subroutine) may
have side effects which cause strong interactions with the function-
ing of other pieces. Globally there is no separation into "facts"
and "process"--they are interwoven in the sequence of operations.
Locally, interactions are strong. It is often futile to try to
understand the meaning of a particular subroutine without taking into
account just when it will be called, in what environment, and how its
results will be used. Knowledge in a program is not changed by add-
ing new subroutines, but by a debugging process in which existing
structures are modified, and the resulting changes in interaction
must be explicitly accounted for.

If we look back to the advantages offered by the use of the two types
of representation, we see that they are primarily advantages offered
by different views toward modularity. The flexibility and economy of
declarative knowledge come from the ability to decompose knowledge
into "what" and "how". The learnability and understandability come
from the strong independence of the individual axioms or facts. On

the other hand, procedures give an immediate way of formulating the

System Development Corporation
-0 June 1977 4-16 TM-5903/000/00

interactions between the static knowledge and the reasoning process,
7d allow a much richer and more powerful interaction between the
nunks" into which knowledge is divided. In trying to achieve a
syntnesis, we must ask not "how can we combine programs and facts?",
but "How can our furmalicm take advantage of decomposability without
sacrificing the possibilities for interaction?"

If the declarative and procedural formalisms represents endpoints on
a spectrum of modularity/interaction, we should be able to see in
each of them trends away from the extreme. Indeed, much current work
in computing and AI can be seen in this light.

This section closes with a quote from [MINSKY75] about the declarative versus
orocedural issue from another point of view.

I draw no boundary between a theory of human thinking and a scheme

for making an intelligent machine; no purpose wouid be served by
separating these today since neither domain hac *!.cories good enough
to explain--or to produce--enough mental capacity. There is, how-
ever, a difference in professional attitudes. Workers from psychology
inherit stronger desires to minimize the variety of assumed mecha-
nisms. I believe this leads to attempts to extract more performance
from fewer "basic mechanisms' than is reasonable. Such theories
especially neglect mechanisms of procedure control and explicit repre-
sentations of processes. On the other side, workers in Artificial
Intelligence f ive perhaps focussed too sharply on just such cuestions.
Neither have given enough attention to the structure of knowledge,
especially procedural knowledge.

It is understandable why psychologists are uncomfortable with complex
proposals not based on well established mechanisms. But I believe
that parsimony is still inappropriate at this stage, valuable as it

==

System Development Corporation
30 June 1977 4-17 TM-5903/000/00

may be in later phases of every science. There is room in the
anatomy and genetics of the brain for much more mechanism than
anyone today is prepared to propose, and we should concentrate
for a while more on sufficiency and efficiency rather than on

necessity.

The above quotations represent two viewpoints on the major problem facing Al--
namely, the management of complexity. Of course, this is also an issue for
research in knowledge-based systems. However, the successes to date with
knowledge-based systems have been attained by carefully controlling this com-
plexity by selecting and working in domains that are sufficiently constrained
while sti11 possessing an interesting and rich probiem space. Without these
constraints, the KBS developer would have to face all of the issues that con-
front the psychological modeler and Al researcher. With these constraints, he
has been able to constru®® ggactical systems with heretofore unachievable

capabilities.

30 June 1977 4-18 System Development Corporation
TM-5903/000/00

4.1.2 Methods of Representing KS

This section describes six technigues used to implement a knowledge source and,
nence, represent knowledge in a KBS. These six were selected for discussion
because they were the six most discussed in the literature. (Many other,
lesser-known techniques have been successfully used to construct systems and
should not be ignored simply because they are not included here.) Two of the
techniques described below, finite-state machines and programs, are normally

used to represent procedural knowledge. Three of the techniques, predicate
calculus, production rules, and semantic networks, are normally used to repre-

sent declarative knowledge. The sixth technique, frames, is an effective
method of combining both procedural and declarative knowledge in a single
representation.

From a theoretical viewpoint, all of these techniques have identical repre-
sentational power because, combined with an appropriate and simple CE, each
can represent a universal Turing machine; therefore, the decision to use one
metnod instead of another is based more upon pragmatic considerations, such
as naturalness and efficiency for the intended application. Section 4.1.3
makes a comparison of these six techniques based upon some of their inherent

properties.

4.1.2.1 Finite-State Machines

A finite-state machine (FSM) is a representation technique for procedural
knowiedge. The FSM is a finite collection of states. Each state specifies

a computation and decision rule to determine what state should next be
entered. Two states are cnecial: the start state is the first state entered,
and the calculation terminates whenever the end state is entered. There are
'wo major uses of an FSM: the first is to represent a grammar; the second is
Lo represent protocols or plans of action. The use of an FSI to represent
jrammars is described in Section 4.4.1.1. (Also, see [WOODS73].) Figure 4.3
graphically shows an FSM representation of a plan of action for making and '

System Development Corporation
30 June 1977 4-19 TM-5903/000/00

Level < 6 Cups

Level>6 Cups [Turn Off

Spigot

Level<<6 Tsp

Get Can Open Can Has Coffee In It

Of Coffee

Empty Can

Level >6 Tsp

Light Off

Light On

Thirsty

Satisfied

Drink
Another
Cup

Satisfied

Rinse Satisfied

Pot

Figure 4.3 Finite-State Machine Representation of a Plan to Make
and Drink a Pot of Coffee

—

System Development Corporation
30 June 1977 4-20 TM-5903/000/00

drinking a pot of coffee. The circles are the states, and each describes an
action to be taken. The decision rule for each state is represented by
labels on the set of arcs that leave the state. An arc label is a predicate
that must be true for control to pass along it. For example, the state

marked "fill pot" has two arcs leaving it. One arc is labeled "level < 6 cups.

This arc keeps the FSM in the pot-filling state until the water level reaches
the 6-cup line. When it is reached, the arc labeled "level = 6 cups" takes
the FSM to the state at which the spigot is turned off.

Four options are available that can affect the power,* size, and reversibility
of an FSM: (1) the set of allowable computations in a state, (2) the set of
allowable predicates on the arcs, (3) parameterization, and (4) the control
mechanism. The kinds of choices available for (1) and (2) are categorized by
specification of a set of primitive actions or computations, specification of
the rules of combination of actions (e.g., functional composition, sequencing,
etc.), and specification of the memory space that can be referenced by the
primitive actions. It is also possible to make an FSM with parameters. For
example, in the FSM of Figure 4.3, the number of cups of coffee to be brewed
could be passed as an argument, and the number, six, replaced by the parameter
name on the four arcs on which it appears.

There are two primitive types of control structure** for FSM: deterministic
and nondeterministic. In a deterministic FSM, at most one arc is followed out
of the present state. This is accomplished by either requiring that at most
one arc predicate be true, or by having a rule that selects one arc out of the

set that qualifies. In Figure 4.3, the state "drink another cup" has arcs
leaving it labeled "pot empty," "satisfied," and "thirsty." It was assumed

*As used herein, the term finite-state machine describes a representation
methodology, not a specific restriction on computation power. For example,
if the states of the FSM are permitted access to a read-write tape of
indefinite length, full Turing power will result.

**See [FISHER 70] for a more complete taxonomy of control structures.

System Development Corporaticn
30 June 1977 4-21 TM-5903/000/00

that there was a selection rule that gave priority to the "pot empty" arc so

] as to not burn the urn. If the FSM cannot leave the state it currently is in

! (excepting the end state) because no arc predicate is satisfied, the operation

E of the machine is said to be blocked. Blocks can occur for two reasons: first,
an error in FSM specification--a legally occurring situation is not handled;

_ and second, the plan of action represented by the FSM is unsatisfiable given

E the current context. The user of the FSM assumes the block has arisen for the
second reason and uses the negative result as a cue to try another method or
procedure. Sometimes the reason for the block can be determined by inspection

and user to guide the new attempt.

In a nondeterministic FSM, it is possible for several different arcs leaving
the same state to be satisfied simultaneously. The assumptions are that each
path will be followed and that, if any path finally reaches the end state,
the FSM has terminated normally. Paths through the nondeterministic FSM may
be dropped when they block. Figure 4.4 shows both a deterministic and non-
deterministic FSM that recognizes symbol strings that start with zero or more
"AB", followed by zero or more "ABAC", and are terminated by a D. (Such an
FSM is called a recognizer or an acceptor.) The states (circles) perform no

o

computation. The start states are labeied "S", and the end states are labeled
"£". The predicates on the arcs test the next character in the input sequence
for equality. The arc predicates are abbreviated by the name of the next
necessary character. In the nondeterministic FSM, the state labeled "X" has
two arcs leaving it that are both labeled with "A." State "X" is handling

two cases: (1) an "A" in one of the initial "AB" groups and the second "A" in
the first "ABAC" group. In the example, the deterministic FSM has one more
state than the nondeterministic FSM. Classes of FSM are known such that the

ﬁ number of states in a deterministic FSM must be at least an exponential func-
tion of the number of states in a nondeterministic FSM that performs the same

calculation. Therefore, there is in some cases an obvious advantage to using a
nondeterministic FSM even though the interpreter (CE) is more complex.

System Development Corporation
. June 1977 4-22 TM-5903/000/00

Deterministic FSM

Nondeterministic FSM

Figure 4.4. Finite State Recognizers for
(AB)* (ABAC)* D

System Development Corporation
30 June 1977 4-23 TM-5903/000/00

There are certain categories of restrictions, upon allowable computations in
the states and upon the arc predicates, for which deterministic and nondeter-
ministic control structures yield differences in computational power. For
the simple class of FSM exemplified by Figure 4.4, there is no difference.
However, for the class of FSM in which the states can place and remove a

character on and from a pushdown stack, and in which the arc predicates can ;
test for equality of the next input character and/or for equality of the top {
character on the pushdown stack, a power difference exists. A task that shows
the difference is the recognition of symbol strings that are symmetric around
their midpoint. A good discussion of power differentials in various classes
of FSM can be found in [MINSKY 67].

Since FSMs so closely resemble flowchart representations of procedures written
in a programming language, it is worthwhile to 1ist some of their desirable
and undesirable characteristics in light of that comparison. The desirable
characteristics are:

(1) The ability to easily implement nondeterministic control.

(2) The ability to represent and model plans of action for which
"procedural" execution inside a computer is meaningless.

(3) Reversibility--that is, an FSM may be examined to answer such
questions as what needs to occur to allow it to end up in a
particular state.

(4) New plans of action may be constructed dynamically because an
FSM representation is easily manipulated.

(5) Many disciplines, both scientific and nonscientific, represent
part of their published expert knowledge in a form similar to
that of an FSM.

System Development Corporation
30 June 1977 4-24 TM-5903/000/00

The undesirable characteristics of FSMs are:

(1) The loss of efficiency compared to compiled procedures.

(2) The enforcement of low-level uniformity in the representation,
which can make the FSM hard to understand (in a sense, FSMs are
better at representing strategies than tactics).

(3) The external format of an FSM representation can lose clarity
unless there is a graphic medium available for romputer input ?
and display.

4.1.2.2 Using Programs to Represent Knowledge

By definition, every computer system contains some knowledge represented by
programs, albeit trivial. The purpose of this section is to describe the
techniques used to represent non-trivial expert knowledge in programs. To be
specific, a program is code written in an effective formal language. By effec-
tive is meant that at each step of execution (equivalently, at each step of
the interpretation), the next step can be unambiguously determined by an
agreed-upon set of rules. This means, of course, that the rules themselves
must constitute an effective program, for which there must exist an agreed-
upon set of rules, and so on, ad infinitum. One should not, however, become
preoccupied by this "infinite regression" in the definition of effectivity;
that problem, like other problems with attempting to formalize intuitive con-
cepts, belongs to the logicians and philosophers. However, the issues
involved cannot be taken 1ightly because a similar problem of definition is
encountered when one tries to ascribe meaning to the contents of a KS. One
widely held viewpoint is that the contents of a KS have no meaning per se and
can come to have meaning only when it is understood how the knowledge is used
and/or what effects follow from its use. From this viewpoint, there is an
analogy between the CE in a KBS and the effective rules of application for a

program,

System Development Corporation
30 June 1977 4-25 TM-5903/000/00

Programs are usually, but not always used to represent procedural knowledge;
in some instances, the majority of chunks in a declarative KS exhibit a
regularity that can be exploited by generating those chunks algorithmically.
While it is true that such an algorithm contains "how-to" knowledge--namely,
how to generate specific knowledge chunks--the user of the KS has available
only the declarative knowledge that results.

Figure 4.5 depicts a program representation of knowledge necessary to turn on
a water spigot. The example program hes .+~ arguments: a human agent, who
will perform the task, and the desired tenperature of the running water.

Much world knowledge is imbedded in this program. For example,

e Water taps are in sinks.
o You need to be close to the sink to contrnol the water taps.

e Cold water comes from the right tap, hot water from the left tap,
and temperatures in between by mixing the two.

e MWater taps are turned on by twisting clockwise and off by twisting
counterclockwise.

e Before adjusting a mixture of water from the two taps to the desired
temperature, the hot water should run until it is at full temperature.

e Relative values of temperature such as cold, lukewarm, hot, etc.,
are used and compared.

Besides this world knowledge, the program contains knowledge about itself--for

example:

e The program will not recur indefinitely (when the cold water is turned
on to mix with the hot water).

e The program will not get stuck in an infinite loop while trying to
adjust the temperature, because only an approximate equality (=) is
necessary to terminate.

TM-5903/000/00

9| dwex3 abpa|mouy |euanpadsoud ‘G 3unbL4

€493BM BY3 U0 Uun3} QN3
912079 aN3
f[2/x>x

.33, “uded 3ybra, “juabe)der-isimi 3573
W3UBLa, € ,dey 3ybia, “jusbe)dey 3sim3 NIHL

System Development Corporation

4-26

30 June 1977

dukj<aunjeuadwal 433em 4174007
dwdjxaanieaadwal 483em T1INN
£,Udny Jey,»x
$(,pL0O2, €1usbe)usiem syl uo uany NIHL
W30y, £duay 41
$3[PL 30y, #oun3euadwal 433eM JTIHM
NI938 NIHL
«de3 333(,=de3 4]
$(,uan3 L ing, ©,3uybLa, <dey <juabe)dey 1sim3
¢ .de3 133] ,~dey 3573
«de3 3ybra ~del NIHL
WP102,,=dwey 4]
¢(,uts, “juabe)je ajzedo|
(84ngeuadway dwey ‘uewny juabe)usjem ayz uo uuani 3IYNA3IN0NJ

TR

T T (T —— T

System Development Corporation
30 June 1977 4-27 TM-5903/000/00

® Program "locate-at" will effectively move the agent to the desired
location.

e Program "twist-tap" expects the agent tn be in proximity of the tap.

It is interesting to speculate about casting these types of knowledge into
declarative rather than procedural form. Of the program's "self" knowledge,
only the last example, a case of "What can other knowledge expect of me?",
would need to be explicit. The other kinds of self knowledge shown (control
structure and what other programs do) are got from a generalized reasoning
process normally used with declarative knowledge, and hence need not be
explicated in the KS. On the other hanc. all the world knowledge listed above,
including necessary temporal ordering of the steps, would need to be present
in the system. Because that knowledge is almost all ad hoc; it is not easy

to see how it could be inferred by or from general principles of reasoning.
The advantage of the program representation is that all of this knowledge is
brought together in a natural manner. The disadvantages become apparent if
one tries to extend this example to a problem domain with multiple kinds of
water spigots. Much of the present knowledge applies to only a few cases
(e.g., there are two spigots in the sink--there could be one-handled spigots),
while some of the knowledge is more universal (e.g., let the water heat up
before adjusting the temperature). The problem is simply how to preserve the
knowledge that applies to multiple cases--this is the virtue of declarative
representations.

Discussed below are two of the many options available when using programs to

represent knowledge: invocation methods and control regimes for state reten-
tion. The four major methods of program invocation are: direct, procedural

.ztacnment, demon, and pattern directed.

Zorect in.ocation occurs when the user (using program) knows precisely which
orogram is to be used and includes a lexical reference to that program

B ——————

System Development Corporation
Zune 1977 4-28 TM-5903/000/00

~,gh a mechanism such as a subroutine call. Procedural attachment was
“zr="oned in Section 4.1.1.4. The idea is that programs can be associated
witt cita fields in a KS or (dynamically) with parts of the evolving workspace
representation. Then, any accessor of a data field that has an associated
program is required to invoke that program. The invoker of a program may be
unaware of both what program is invoked and what functions the invoked pro-
gram is to perform. Usually, only the program that makes the attachment has
tnat knowledge.

Programs invoked by the third method are calied demons. A demon is introduced
TO the run-time monitor by a statement such as

DEMON(P,C)

«nich means "if condition C (a predicate or situation description) is ever
-~countered during future execution of the system, call program P." A demon
11ke an interrupt handler in an operating system because it sits on the

sicelines, rather like a sentinel that protects the system; they perform no
action until (and unless) a specific situation is encountered. They allow
kncwledge that pertains to highly specialized or unusual situations to be
ieft out of the main stream, making programs more readable and easier to
organize. The -~un-time monitor has the task of watching for an enabling con-
dition for any of the introduced demons. This can be an expensive operation
and represents the chief drawback of demons. The alternative to this kind

of invocation scheme is to make explicit in-line tests tor unusual situations
with a resultant lac of clarity.

The fourth method of program invocation is variously called pattern-directed
or goal-directed invocation. In a system using this method, each program is
named by a pattarn that describes the kind of tasks it performs. This pat-

tern is used in lieu of the program's name. Thus, the invoking program

System Development Corporation
30 June 1977 4-29 TM-5903/000/00

specifies a goal that needs to be achieved, and the run-time monitor searches
for one or more programs whose patterns match the current goal. One of the
programs so found is selected and invoked. If that program succeeds in ful-
filling the goal, execution proceeds. If not, another program found by the
pattern-matching search can be tried. There are issues concerning in what
order to try the programs and what to do if no program can achieve the goal;
these issues are discussed further below as control regimes. An example of a
pattern for the "locate at" goal (used in Figure 4.5) might be

(Tocate_at human object)
Tnis state: that the program can plan the sequence of actions necessary to
move a human into proximity to an object. Another program in the same system
couid have a pattern such as

(Tocate_at object; object,)

This program plans the sequence of actions necessary to move object; into
sroximity to objectz. The second program performs a different task from that
.- zne first program, because the entity that is moved may require an external
acent to effect transfer. An interesting case arises if a human is defined

to be a kind of object; namely, any goal that matches t“e first pattern would
aiso match the second pattern.

Since programs operating in a system that allows pattern-directed goal invoca-
tion can themselves pose subgoals, this method of invocation allows a natural
way of performing means-ends or problem-reduction analysis. Another natural
use is for theorem proving where domain-specific heuristics are imbedded with
the axiomatic knowledge. The proof proceeds through decomposing the original
problem to a set of successively smaller subproblems, the solution of which
implies tne validity of the original theorem. The heuristics control the

|

System Development Corporation
30 June 1977 4-30 TM-5903/000/00

-2 ~ch by specifying the order in which subproblems are generated. The chief
advantage of the pattern-directed invocation technique is that, in practice,
© program must have in it a tremendous amount of information about the
-~ programs it may invoke. If it does not, glaring inefficiencies and bugs

“n the form of infinite generation of subproblems or no satisfaction of cer-
1 o-als will surely arise. Systems using pattern-directed invocation
Zecnnigues, therafore, become increasingly difficult to modify and extend over

time.

Besides the options available in invocation techniques, there are options in
the control regimes that may be used for a system. Though there are many
facets of this topic, we are interested only in the problem of state retention
when the system faces several alternatives as to what to do next. There are
three basic choices for a control regime: sequential, parallel, and non-
ceterm nistic. In a sequential regime, the program itself explicitly makes
tne crnoice of what to do next and how to reestablish enough state in case
wne Tirst attempts are failures. One program invokes another and expects the
‘atter to return, subroutine style, at the completion of its activity. In a
cezrallel regime, many Subprograms can operate simultaneously or, 5t least, in
_7= interleaved fashion. The programs themselves are responsible for
-xplicit synchronization activities to avoid the many problems that can arise
when various resources (such as variable bindings) are shared by the active
set of programs. A nondeterministic control regime is like a parallel con-
trol regime exc:pt that each program, when operating, is guaranteed to have
the same environment it would have if it were the only program of the active
set that had ever op rated. A nondeterministic control regime is often called
sutomatic backtracking. The idea is that one of the many possible alternative
“rancnes is followed. During execution of a branch, changes made to the com-

‘4tion state are remembered. In case a failure is encountered, the remem-
tate changes are undone, and control returns to a decision point at
‘+ 4 lternate branch remains. Then this branch is followed, and so on.

System Development Corporation
30 June 1977 4-31 TM-5903/000/00

The different invocation and state-retention options discussed above differ

in their generality. The more general the mechanism used, the more complicated
must be the run-time monitor. The penalty for complexity is loss of efficiency.
On the positive side, systems using the more general mechanisms tend to be
better organized and, hence, easier to modify and extend because a large amount
of bookkeeping is buried in the run-time monitor.

A good overview of recent developments discussed in this section can be found
in [BOBROW75d]. Another paper that discussed many issues of general interest
is [HEWITT73]. 1In [BOBROW73], a general method of providing state retention
is described--commonly called a "spaghetti stack." [FISHER70] describes a
toxonomic theory of control structures. A few interesting systems that use
programs to represent knowledge are described in [HEWITT72], [R. MOORE75],
[SUSSMAN75], and [WINOGRAD72].

4.1.2.3 Predicate Calculus Representation of Knowledge*

The predicate calculus is a formal symbolic notation system (formal language)

for expressing logical relationships and making assertions about a domain or
model. There are three parts to its definition: (1) syntax specification--the
grammar that defines legal expressions in the language, (2) semantic
specifica:ion--the ruies that relate the symbols in the language to objects in
the domain, and (3) legal operations--rules of inference that create legal
expressions from other legal expressions. The syntactically legal expressions
in the predicate calculus are called Well-Formed Formulae (WFF). Through the

semantic specification rules, a WFF makes an assertion about the domain. The
WFFs are said to have the value T or F, depending on whether the assertions
are true or false of the domain. The legal operators are constrained in such

*Many definitions and examples in this section are taken from [NILSSON71] a
book that should be read by anyone seriously interested in the topic.

System Development Corporation
30 June 1977 4-32 TM-5903/000/00

a way that the value (T or F) of a WFF output by a transformation can be
directly determined from the values of the WFFs input to the transformation.

The syntax specification of the first-order predicate calculus has two parts:
the specification of an alphabet of symbols and the method by which legal
expressions are constructed from these symbols. The alphabet consists of the
following set of symbols:

1. Punctuation marks: , ()

2. Logical symbols: ~ = v A (The symbols are read, respectively
as not, implies, or, and and.)
3. Quantifier symbols: ¥ 3 (The symbol ¥, is called the universal

quantifier and is read for all; the symbol 3 is called the
existential quantifier and is read as there exists.)

4. n-adic function letters: f;" (i 21, n 20) (The fio are called
constant letters. For simplicity, it is conventional to use
lowercase letters near the beginning of the alphabet (i.e., a, b,
c), or lowercase words (e.g., line, dog) as abbreviations for the
fio. Similarly, the lowercase letters f, g, h and lowercase
function names, such as cos, are used without subscripts in place
of the other fi".)

5. n-adic predicate letters: pin (i 21, n20) (The pio are called

proposition letters. For simplicity, capital letters near the
niddle of the alphabet (i.e., P, Q, R) and capitalized predicate
names (&.g . GREATER-THAN, MALE) are used, without subscripts, as
abbreviations of the p;".)

6. Variables: x; (The x; are frequently abbreviated by letters near

the end of the alphabet without subscripts, i.e., x, y, z.)

System Development Corporation
30 June 1977 4-33 TM-5903/000/00

From these symbols, the definition of a WFF can be recursively expressed:
1. Terms
a. Each constant letter is a term.
b. Each variable letter is a term.

. If fin is a function letter and ty tp...t, (n=1) are terms then
f3Mtyatp. ..t) 15 a term.

d. No other expressions are terms.
2. Atomic formulae (Domain-specific Boolean-valued expressicns)
a. The propositional letters are atomic formulae.

Vi 07 ty to...t, (n21) are terms and pin is a predicate letter, the
expression pjN(ty,tp...t) is an atomic formula.

c. No other expression is an atomic formula.
3. WFFs
a. An atomic formula is a WFF.
b. If A and B are WFFs, then so are
i (~A) (Read as not A)
ii (A=>B) (Read as A implies B)
iii (AvB) (Read as A or B (or both))
iv (AAB) (Read as A and B)

. If A is a WFF and x is a variable, then the following
are WFFs:

i (¥x)A (Read as for all x, A)

it (Ix)A (Read as, there exists x such that A)

d. No other expressions are WFF.

TR —

System Development Corporation
30 June 1977 4-34 TM-5903/000/00

"ne parentheses shown in 3b and 3c are usually omitted in cases where no
confusion will rasult. Some examples of WFFs, using abbreviated notation,

are:
~P(a,g(a,b,a))
P(a,b)=(3y) (3x) (Q(a,y)vS(x,y,a))
(LESS(a,b)ALESS(b,c))=>LESS(a,c)

Some examples of expressions that are not WFFs are:
~f(a)
h(P(a))
Q(f(a),(P(b)=Q(c)))

The semantic specification rules for the predicate calculus give a "meaning"
to the WFFs by making a correspondence between symbols in the calculus and
objects in the domain. The domain, D, is a nonempty set* of objects. The

necessary correspondences are:

1. Associated with every constant symbol in the WFF is some
particular element of D.

2. Associated with every function letter in the WFF is an n-adic
function over (and into) D.

3. Associated with every predicate letter in the WFF is some particular
n-place relation among the elements of D. (A relation may be con-
sidered as i function whose only values are T and F.)

The specification of a domain and these associations constitute an interpreta-
tion or a model of the WFFs.

*The domain set may be finite or infinite and, in fact, of any cardinality.
This raises issues about our notation, f;M, p;N, and x;, which restricts us
to countable symbols. The issues are not addressed herein.

System Development Corporation
30 June 1977 4-35 TM-5903/000/00

3iven a WFF and an interpretation, we can assign a value, T or F, to each atomic
formula in the WFF. These values can be used in turn to assign a value, T or F,
to the entire WFF. The process by which a value is assigned to an atomic for-
mula is straightforward: If the terms of the predicate letter correspond to
elements o D that satisfy the associated relation, the value of the atomic
formula is T; otherwise, the value is F. For example, consider the atomic
formula:

P(a, f(b, ¢))
and the interpretation
D is the set of integers
a is the integer 2
b is the integer 4
c is the integer 6
7 is the (two-argument) addition function

P is the relation greater-than

Witn this interpretation, the above atomic formula asserts that "2 is greater
than the sum of 4 and 6". In this case, the assertion is false and P(a,f(b,c))
has the value F. If the interpretation is changed so that a is the integer 11,
then the value is T.

Tne method of assigning a value to an atomic formula containing variables is
not so simple. For example, the atomic formula:

(¥x)P(f(x,a),x)
with the interpretation
D is the set of integers
a is the integer 1
f is the (two-argument) addition function
P is the relation greater-than

System Development Corporation
30 June 1977 4-36 TM-5903/000/00

makes the assertion, "for all x in D (x any integer), x plus one is greater
than x". Hence, the atomic formula has a value only under the "influence" of
the quantifier. When more than one quantifier is used, then the operation of
2ach may depend upon those further to the left. Let the interpretation be

D is the set of integers

P is the relation greater-than

" e, the WFF,
(¥x)(3y)P(y,x)

asserce that for all x (integer) there exists a y (integer) which may depend
upon tne chosen <¢--such that y is greater than x. The value of this WFF is T.
However, the WFF

(3y) (¥x)P(y,x)

asserts that there exists a y (integer) such that y is greater than any
(integer) x. The value of this WFF is F.

The vaiues of WFFs composed using logical symbols are derived by a set of rules
thaz are independent of.the interpretation. If X is any WFF, then (~X) has the
val T when X has the value F, and (~X) has the value F when X has the value T.
“:p e 4.2 shows how the values of WFFs composed by the other logical connectives

@

.re determined 1rom the values of the WFFs X] and X2‘

..ven these definiti ns of the logical and quantifier symbols, it is easy to
show that the symbols A, v, and 3 are redundant because they can be expressed
in terms of the symbols ~, = and

XqAXp=~(Xy=>~X

1 2)

Xy YXy= (=X,) =X

1% 2

System Development Corporation
30 June 1977 4-37 TM-5903/000/00

TABLE 4.2. DEFINITION OF THE LOGICAL CONNECTIVES

Xy X, vy R X=X,

T 5 T T T

F T 7 F T

T F T F F ‘
F F F F T

Several terms are used to describe properties of WFFs and the calculus itself:
A WFF that has the value T for all interpretations is called valid. It can be
shown, by consulting the truth table (Table 4.2) that the WFF (P(a)=>P(a)) has
the value T regardiess of the interpretation and is therefore valid. ‘A calculus f
is called decidable if there exists a general method of determining, for any
WFF in that calculus, whether it is valid. Otherwise, the calculus is said to
be undecidable. If the same interpretation makes each WFF in a set of WFFs
have the value T, then this interpretation is said to satisfy the set of WFFs.
If no interpretation exists such that each WFF simultaneously has the value T,
then the set of WFFs is said to be unsatisfiable. A WFF W logically follows
from a set of WFFs, S, if every interpretation satisfying S makes the vaiue

of WT. To prove W given S means to show that W Togically follows from S.

The calculus described above is called the first-order predicate calculate and

is known to be undecidable. That is, there does not exist a procedure for deter-
mining whether any arbitrary WFF is valid. If the use of quantifiers and vari-
ables is prohibited, the result is called the propositional calculus, a decid-

able subset of the first-order predicate calculus. A second-order predicate

n

calculus comes about by allowing quantification of propositional letters (pi

4 System Development Corporation
30 June 1977 -38 TM-5903/000/00

and, if desired, the fin over i) in addition to the quantifications allowed in
the first-order theory. This permits WFFs of the following sort:

(¥P)(T(P)==(¥x)(¥y)(¥z) ((P(x,y)aP(y,z))=>P(x,2)))

This defines transitivity of a predicate. That is, if T(P), then P is transi-
tive. If this is to be approximated in the first-order theory, then for each
ot the possibly many transitive predicates, say P, there must be an individual
axiom of the form:

(¥x) (¥y) (¥z) ((P(x,y)aP(y,z))=P(x,2z))

Obviously, the second-order form is more general and expressive than the first-
order form. It is easy to see how this process of generating higher-order
calculi could be continued indefinitely by allowing quantification of the
higher-order predicate letters, such as T in the above example. (Such a cal-
culus is called "omega ordered".) However, the higher-order calculi have not
been used in KB or AI systems to date because no one has a clear notion of how
to ‘mplement procedures for using them.

The predicate calculus provides a natural way of expressing delcarative knowl-
edge. A KS is a collection of WFFs and the semantic rules that relate them to
the domain of application. The included WFFs all have the value T and are
called axioms. The semantic rules are usually straightforward and implicit;
i.e., the abbreviated names used for the f].n and p1.n are chosen in such a way
that the correspondence to the domain is intuitive. Recall, for instance, the
example WFF used in Section 4.1.1.4:

(¥x) (CHICAGOAN(x)ALAWYER(x)=>CLEVER(x))

which asserts that all Chicago lawyers are clever. New knowledge is derived
and problems ar: solved by automatic proof procedures. The results have the

status of theorems and may be used to derive further results.

System Development Corporation
30 June 1977 4-39 TM-5903/000/00

Another example (taken from [P. KLAHR77]) is shown in Figure 4.6. There are
four axioms: (1) Jack is the husband of Jill, (2) Jill lives in Boston, (3) if
X is the husband of X5 then X and X, are married, and (4) a married couple
lives in the same place. (The illustration ignores the fact that the marriage
relation is symmetric, i.e., MARRIED(x],x2)=>MARRIED(x2,x])). The assertion
derived is "Jack lives in Boston." The proof is shown schematically with the
reasoning chain depicted by the single arrows. Thus, the proof consists of the
above axioms as steps (1) through (4) followed by:

(5) Jack is married to Jill--because of (1) and (3).

(6) Jack lives in Boston--because of (2), (4), and (5).

When passing along the airows, an association is established between the vari-
ables and/or the terms on each side of the arrow. For example, along the arrow
labeled Uys Xq and X, are respectively associated with Jack and Jill, and along
the arrow labeled Ups Xq and X, are respectively associated with X3 and Xg-
Each such association is called a unification. The set of all such unifica-
tions are summarized, under the heading "Variable chains", at the bottom of the
figure. There are three chains in the example: (Jack X1 x3), (Jin Xo x4),
and (Boston x5). The chains are formed as equivalence classes of terms and
variables so that each variable is in one and only one chain, no variable in
one chain unifies with a variable in another chain, if the chain contains more
than one element then each element unifies with at Teast one other element in
the chain, and the number of chains is maximal.

In order for a proof to be proper, there are three consistency criteria:

(1) at most one term can occur in an equivalence class--all variables in the
class then have this value; (2) if no terms occur in a class, then there must
exist an object in the domain such that all variables in the chain may legally
assume that value; and (3) either condition (1) or (2) must apply simultaneously
to every chain. (The definition of variable chains and other consistence cri-
teria are more complicated than stated herein if terms are present that are
built up from fin, n>0.)

System Development Corporation
30 July 1977 4-40 TM-5903/000/00

AXIOMS: (1) HUSBAND (Jack, Jill)
(2) LIVES.IN (Jill, Boston)
(3) (v xq) (Vx2) (HUSBAND (x19,x2) =>MARRIED (x1,x2))
(4) (Vx3) (xg) (Vxg) (MARRIED (x3,x4) A LIVES.IN (x4,x5)) =>
LIVES.IN (x3,x5))

HUSBAND (Jack, Jill) LIVES.IN(Jill,Boston)
uq
HUSBAND(x1,x2) =>MARRIED(x1,x2) u3
u2

MARRIED(x3,x4) A LIVES.IN(xg,x5) => LIVES.IN(x3,x5)
ug

LIVES.IN(Jack,Boston)

U1 U3 U4
Variable chains: Jack —#xq —%Xx3 —» Jack

U1 u2
Jill—p xg —pxg
L
Jilt

u 3 u 4
Boston —p xg —p> Boston

Theorem: LIVES.iN(Jack,Boston)

Figure 4.6. Proof that Jack Lives in Boston

System Development Corporation
30 June 1977 4-41 TM-5903/000/00

The example shows a method of determining a value (in this case T) of the
assertion, "Jack lives in Boston." This raises the natural question of how to
deal with the problem, "Where does Jack 1ive?" The method described in Nilsson
(op.cit.) for solving this kind of problem is based on the resolution technique
for generating proofs in the first-order predicate calculus. The method con-
sists of two parts: (1) use resolution to generate a proof for a related
problem--for our example, (3x)LIVES.AT(Jack,x); and (2) use the generated proof
to find an appropriate answer to the problem--in this case, x=Boston.

The next example, known as the monkey and bananas problem, shows one method of
solving a planning problem--the method is called state-space and operators. In
the monkey and bananas problem, the monkey is initially at position a, there is
a box at pesition b, and a bunch of bananas hanging above position c. The
monkey cannot get the bananas unless he is standing on the box at position c.

A state in this problem consists of four facts: (1) the monkey's position,

(2) the box's position, (3) whether the monkey is on the box, and (4) whether
the monkey has the bananas. Five operators are available to transform one
state into another state: (1) the monkey can walk to any position, (2) he can
push the box around the room, (3) he can climb onto the box, (4) he can climb
off of the box, and (5) he can grasp the bananas. Thus, the problem can be
restated as, find a sequence of operators that transform the above stated _
initial state (monkey at a, box at b, etc.) into the desired goal state (the W
monkey has grasped the bananas).

Figure 4.7 formaiizes the monkey and bananas problem in predicate claculus. 1
The major predicate letter, P, is a relation that determines valid (legal) i
states. P(x1,x2,x3,x4,x5) is the representation of the assertion that the

monkey is at position X1 the box is at position Xos the monkey is on the box

s

i X3 is T and off the box is X3 is F, and the monkey has the bananas if X4 is

7 and does not if X4 is F. The last term of P, Xg s is a contrivance that
makes it possible to find the sequence of operators that solve the problem.
Basicaliy, Xg is a representation of how we have come to be in this state.
This will be clarified below.

30 June 1977

Axioms:

Model:

Proof:

(1)
(2
(3)
(4)
(5)
(6)

System Development Corporation
4-42 TM-5903/000/00

P(a, b, f, f, i)

(Vs1) (¥x4) (Vx5) (VX3) (Vv1)P(x1, xg,f,vq,89) = P(X3, xo, f, vq, walk (x1, x3,81))
(Vsz) (Vx4) (Vx5) (Vv2)P(X4, xg. f, vp, sz) => P(x5, xg, f, vo, pushbox (x4, Xg, s2))
(Vs3) (Vxg) (Vv3)P(xg, xg, f, v3, 53) =>Plxg, X, t, v3, climbbox(s3))

(Vsq) (Vx7) (Vvg)P(x7, X7, t, v4, 54) => P(x7, x7, f, vg4, jumpoff(sy))

(Vss)P(c, c . tf, 55) =>P(c, c, t,t, grasp(s5))

a is the original location of the monkey

b is the originai location of the box

c is the location over which the bananas hang

tis “"true”

fis "false”

walk, pushbox, climbbox, jumpoff, and grasp are the sequence of operators achieved by
applying the operator to its arguments

i is the null sequence of operators

P(xq, x2, X3, X4, x5) is the relation - can the monkey be at location x1, the box at

location x5, the monkey on the box (as xgistor f), the monkey has the bananas
(as x4 is t or f), after the application of the operator sequence xg?

(1) P(a,b, f, f, i)(L)bP(b, b, f, f, walk(a, b, i))

(3)

P(c, c, f, f, pushbox(b, c, walk(a, b, i)))

(4)

P(c, c, t, f, climbbox(pushbox(b, c, walk(a, b, t))))

e |

P(c.c, t, 1, grasp(climbbox(pushbox(b, ¢, walk(a, b,i)))))

Figure 4.7. The Mcnkey and Bananas Problem

System Development Corporation
30 June 1977 4-43 TM-5903/000/00

Tne initial state is defined as axiom 1 in Figure 4.7 as P(a,b,f,f,i)--that is,
tne monkey is at a, the box is at b, the monkey is not on the box, he does not
nave the bananas, and this state has been achieved by applying the null sequence
of operators, i. The five operators are defined by axioms 2-6.

Axiom 2 defines the walk operator as: The monkey can walk from where he is at
(x]) to any place (x3) as long as he is not on the box. Note, this axiom
explicitly states that the box stays in the same place and possession of the
bananas does not change because of walking.

Axiom 3 defines the pushbox operator as: If the monkey and the box are at the
same place (x]) and he is not on the box, then he can push the box anywhere he
wishes (x5). Further, after pushing the box, the monkey and box will be at the
same location, and possession of the bananas does not change.

Axiom 4 defines the climbbox operator as: If the monkey and the box are at the
same place (x6) and he is not on the box, then he can climb onto che box.
Positions and possession remain the same.

Axiom 5 defines the jumpoff operator in a similar manner.

Axiom 6 defines the grasp operator as: If the monkey and the box are both at
position ¢ (where the bananas are located), he is standing on the box, and he
does not have the bananas, then he may grasp them. Further, positions do no

change and he is still on the box.

The probiem is solved in a manner similar to that used for the last problem.
First, a related theorem is proved; namely:

(33)(3x])(3x2)(3x3)P(x],x2,x3,t,s)

From this proof, the values of s, X5 Xpo and X are found, by mechanical means,
to establish tne more interesting theorem,

P(c,c,t,t,grasp(climbbox (pushbox(b,c,walk(a,b,i)))))

AO44 883 SYSTEM DEVELOPMENT CORP SANTA MONICA CALIF F/6 9/2

KNOWLEDGE=BASED SYSTEMS: A TUTORIAL: (U) .
JUN 77 J A BARNETT, M I BERNSTEIN MDA904=76=C=0343 '
UNCLASSIFIED SDC=TM=(L)=5903/000/00 NL

20rd]
_‘:J-\:-I‘.ll—! 883

-] <

/‘
/
-/ System Development Corporation
30 June 1977 4-44 TM-5903/000/00

P's fifth argument then gives the monkey a verified plan to get the bananas:
walk from location a to b, push the box from b to ¢, climb on the box, and,
finally, grasp the bananas.

The proof of the final theorem is illustrated at the bottom of Figure 4.7. The
arrows connecting the WFFs are labeled with the number of the axiom used to
draw the conclusion at the end of the arrow. It should be noted that (1) the
derived result is not unique--for instance, the monkey could walk all over the
room, jump on and off the box, and generally engage in monkeyshines, until he
gets hungry enough to get down to business; and (2) it is unlikely that any
c.tomated problem solver would find just the operator applications shown in the
#.3ure without trying several false paths. For example, after walking to the
box, walk, climboox, and pushbox are all allowable operations. Some sort of
trial-and-error or heuristic method would be necessary to determine what step
should be next tried. These comments apply also to the previous example.

This section has been relatively lengthy because predicate calculi are the best
theoretically understood and among the oldest used techniques for representing
knowledge in a computer. We conclude by summarizing some of the characteris-
tics and merits of this formalism.

The predicate calculus is clearly a declarative form of knowledge representation.

At such, it is modular and reversible. The chunk size (i.e., a WWF axiom) is
variable. In practice, however, one would never expect to encounter an axiom
that comprised niore than a half dozen or so clauses because it is formulated by
a human expert. If it were any larger, its intelligibility (to a human) would
be greatly diminishe \. On the other hand, representing procedural knowledge in
the predicate calculus is at best difficult. (Consider encoding, as WFFs, the
knowledge embedded in the example shown in Figure 4.5; further consider the
difficulty of a human domain expert's doing the encoding.)

Another disadvantage of the predicate calculus is that the entire set of axioms
must be consistont. That is, if a WFF, W, logically follows from the axioms,
then the WFF ~W does not. If an axiom set is not consistent, it is easy to

!
{
|

System Development Corporation
30 June 1977 4-45 TM-5903/000/00

demonstrate that every WFF has the value T. The onus of maintaining consistency
in a KS containing WFFs is a major problem. For one thing, it makes it impos-
sible to include heuristic and possibly contradictory rules of thumb and other
sorts of expert knowledge, and thorough formalization may not be within the
state of the art of the application area.

One advantage of using the predicate calculus is that automatic procedures are
known such :hat if N follows from the axioms, then it can eventually be proved.
However, no theoretical upper bound exists on the amount of time it will take
to find a proot. One can attempt to evade this problem by trying to prove W
and W in parallel and quitting when either proof succeeds. However, since the
first (and higher) order predicate calculi are undecidable, it may therefore be
the case that neither proof process terminates. Hence, one must impose some
sort of resource limitation on the effort expended to derive or prove something
from the axioms.

Another characteristic of predicate-calculus representations is demonstrated by
the example of Figure 4.6--namely, there are two broad categories of axioms.
First, there are specific facts such as "Jack is Jill's husband" or "Jill lives
in Boston." Second, there are general assertions such as "married couples live
at the same place." In any actual application domain, the number of facts will
be overwhelming when compared to the size of the axiomatic base for a branch of
mathematics or logic. The result is impractically slow proof procedures or the
use of dif“erent methods, in the CE, to handle facts and general knowledge. For
a good discussion of this problem and a proposed approach to using predicate
calculus in practical areas, see P. Klahr (op. cit.).

Many publications exist in the area of using the predicate calculus for a knowl-
edge representation and theorem-proving techniques for solving problems. The
best introduction to the area is Nilsson (op. cit.). A sampling of other work
is to be found in [BLEDSOE73], [FIKES71], [GERLERNTER63], [GREEN68], [P. KLAHR77
and 75], [POPLE73], [ROBINSON70 and 65], [SANDEWALL70], and [YATES70].

-

System Development Corporation
30 June 1977 4-46 TM-5903/000/00

4.1.2.4 Production Rules

Production rules have been used as the prinicpal method of representing
knowledge in many (if not most) of the highly successful KB systems--for
example, MYICIN and DENDRAL. Therefore, their importance is immediate. This
section describes production rules using several examples and introduces termi-
nology and issues.

A production rule is a specification of a conditional action. It consists of

a left hand side (LHS), also called the condition or the antecedent, which

describes a situation, and a right hand side (RHS), also called the action or

consequence, which describes something that may legally be done in a situation
described by the RHS. For example, in "If you are outdoors and it is raining,
then open an umbrella." The conditions are (1) being outdoors and (2) rain.

The action is to open an umbrella.

Production system is an ambiguous term. Its original meanin, = a KS com-

prised of production rules. In current usage, the meanin¢ e term produc-
tion system refers to a three-component entity: (1) a collection of production
rules, (2) a workspace, and (3) a control mechanism. The production rules are
represented by some agreed-upon syntax, by means of which the LHS and RHS are
built up from a set of primitives and symbols that correspond to objects, func-
tions, and predicates in a domain. (See the previous section for a description
of <imilar correspondence rules when using predicate calculus formulae.) The
workspace,” 2lso called the data base, contains the total description of the
system's current sta e or situation. The LHS of a rule describes, or is
matched against, the contents of the workspace. If a production is applied,
i.e., its LHS matches and its RHS is executed, then the RHS actions modify the
workspace.

*In systems used to do psychological modeling (e.g., PSG [NEWELL73]), the
workspace is limited by a fixed maximum number of entries, usually 7 to 12,
called the short-term memory.

4-4 System Development Corporatibn
30 June 1977 4 TM-5903/000/00

The control mechanism generally has the form shown in Figure 4.8. The first
part, represented by the FOR loop, builds the conflict set--the set of all
production rules whose LHSs are satisfied. If the conflict set 1s empty, then
processing is terminated, and the result is the contents of the workspace.
However, if the conflict set is not empty, then the conflict-resolution
strategy selects one member of the conflict set and the RHS of the selected

production rule is executed. The entire cycle is then repeated until the ter-

mination condition is reached.

Toop: conflict set<empty;
FOR p IM set of production rules
DO IF left hand side(p) matches work space

THEN add p to conflict set;

IF null conflict set THEN terminate;

g<resolution of(conflict set);

execute right hand side(q);

GO TO loop;

Figure 4.8. Control Mechanism for Production Systems

Several conflict-resolution strategies have been used or proposed. Among them

are:

rule order--There is a complete ordering of all production rules. The
rule in the conflict set that is highest in the ordering is chosen.

rule precedence--A precedence network (which may contain cycles) deter-

mines an ordering.

generality order--The most specific rule is chosen.

data order--Elements of the workspace are ordered. The rule chosen is the
one whose LHS references the highest-ranking workspace element(s).

System Development Corporation
30 June 1977 4-48 TM-5903/000/00

regency order--Execute the rule in the conflict set that was most (Teast)
recently executed, or the rule in the conflict set whose LHS references
the most (least) recently referenced element(s).

non-deterministic--Execute every rule in the conflict set as if it were

the only member. Computation stops when any path terminates. This is
equivalent to backup in program schemes--see Section 4.1.2.1,

The original use of a production system formalism to perform or simulate compu-
tational tasks can be traced to [Post 36]. The example shown in Figure 4.9
closely approximates the original notation. There are three rules--named I, M,
and F for convenience (the names are not part of the formalism). The rules are
applied to a workspace that is an ordered sequence of symbolic characters made
up from the two-character alphabet consisting of 1 and #. The form of each
rule is

LHS==RHS

Both the LHS and RHS have the same form, namely, an alternating sequence of $i
and strings of characters (including empty strings) from the alphabet. A
character string matches any identical string in the workspace, and a $i matches
any string (including the empty string). The LHS is said to match if the
sequence of Si and character strings match the entire workspace in their lexi-
cal order. When a production is applied, the entire workspace is replaced by

a string defined by the RHS. The RHS defines the character sequence that is
shown, with substitu. ions for each Si by the characters matched by the LHS.

For example, rule [natches the work space

#11141111 4
with S]Alll ~nd $231111. Thus, the RHS, #$]#$2##, generates or defines the new

workspace as #111#1111##. In the figure, the process of applying the rules is
shown until a final result is produced. Arrows connecting consecutive workspace

30 June 1977

System Development Corporation

4-49

PRODUCTION RULES

(1) #8,#8,—#$,#5, 44

(M) #18#3,#8 =48, #8,#3,#52#
(F) ##$,#5,— 43,4

EXAMPLE USE
#111411114

[

#FITTH111 144

M

#1T#111T#1117#

M

\

#1#11114111010 1114

M

\
##1T1141111110111174

F
#F1T111111111 14

Figure 4.9. Use of Production Rules to Multiply

TM-5903/000/00

System Development Corporation
30 June 1977 4-50 TM-5903/000/00

representations are labeled with the name of the applicable rule. The
conflict-resolution strategy is to use either rule M or rule F instead of
rule I whenever there is a conflict. If the original input is a sequence of
n 1's and a seguence of m 1's delimited by #, i.e.,

#1,1

1 2...]n#1

]]2...]m#

then the result is a sequence of nm 1's bracketed by a pair of #'s (e.g., unary
multiplication).

The next example (see Figure 4.10) shows a production system that translates
arithmetic infix expressions, composed from variable names A, B, and C and
operators + and *, into the equivalent Polish prefix expression. A Polish pre-
fix expression is either a variable name or a list whose first element is a
function or operator and whose subsequent elements are arguments. Thus,

(+ exp, exp2) is the Polish equivalent of the infix expression exp +exp,. This
example is basea upon standard techniques for constructing compiler-compilers;
see, for example, [SCHORRE64].

In the example, each production rule has the form

pat]---patn+ name[part]---partm]

The LHS of the rule is the sequence pat]---patn, and the RHS is
name[part]-.~partm]. Each pati is either one of the input character set

(i.e., A, B, C, +, 0 %) or a name appearing in some rule's RHS. The LHS is
satisfied whenever each pat. exactly matches an entity in the workspace and

the entities in the workspace are contiguous and in the same order as the
appearance of the pati. Note that it is not necessary to match the entire
workspace for the LHS to be satisfied. The RHS specifies that the matched por-
tion of the workspace is to be replaced by name. Associated with name is a
value, which is part]---partm. (The value is not used in determining subse-
quent LHS matches.) Each parti is either a character constant (from the input

System Development Corporation
30 June 1977 4-51 TM-5903/000/00

PRODUCTION RULES

(v1) A-var[A]
(v2) B-var[B]
(v3) C>var[C]

(t1) var-term{1]
(t2) term*term>term[(*1 3)]
(al) term-exp[1]

(a2) exp+rexprexp[(+ 1 3)]

EXAMPLE USE

A+B*C
vl-3
var[A]+var[B]*var[C]
Jt]
term[A]+term[B]*term[C]
ke
term{A]+term[(* B C)]
Je]
exp[A]+exp[(* B C)]
e2

exp[(* A (* B C))]

Figure 4.10. Use of Production Rules to Translate

System Development Corporation
30 June 1977 4-52 TM-5903/000/00

set or, in this case, one of the additional characters "(" or ")"), or an

integer. If parti is an integer, say k, then it specifies the value associated
with patk.
order--v1 through aZ2.

The control mechanism uses the first rule that applies in the given

The bottom portion of the figure traces the chain of modifications to a work-
space whose init:al content is A+B*C. When activity terminates, the workspace
is the single part, exp, and the value dassociated with this part is

(+ A (*BC)), the Polish-prefix equivalent of the initial infix expression.
Consecutive workspace configurations are connected by labeled arrows; the label
is the name of the production rule that caused the modification. (When several
modifications are made by the same (or similar) rules, e.g., vl, v2 and v3,
then all transfori 5 are shown simultaneously.) When the workspace con-
tents are

term[A]+term[B]*term[C]

rule t2 is applied. The table below identifies the components of the rule and
the matched parts and values for this rule application:

pat] term term [B]
*
pat2 u
pat3 term term [C]
name term
part, (
*
part2
part3 1 B
part, 3 G

part)

System Development Corporation
30 June 1977 4-53 TM-5903/000/00

Thus, chis rule replaces term[B]*term[C] with term[(* B C)]. Therefore, the
entire workspace becomes

term[A]*term[(* B C)]
The rest of the example can be analyzed in a similar manner.

The last example is a production system that assists the service manager and
mechanics in an automobile repair agercy (see Section 2.1). The scenario for
using this system is the arrival of a customer at the agency. He reports the
symptoms and problems to the service representative, who then enters this infor-
mation into the system. The system has at its disposal a data base of past
problems, repairs, and services performed on the vehicle, and a KS of product-
jon rules that describe cause-and-effect relationships among the performance
characteristics and measurable attributes of an automobile. Using the reported
information, the past-history data base, and the KS, a diagnostic and repair plan
is formulated and implemented.

Figure 4.11 gives a few of the production rules that might be present in such
a system. Each rule is named; however, the rule names are used only for con-
venience. The format of the rules is

IF Thsy Cq Thsye--Cp g lhsn

THEN rhs][p]] K] rhsz[pz]...Km_] rhsm[pm];

where the C] and K] are the connectives AND and OR. The LHS is everything
between the keywords IF and THEN, and the RHS is everything following the THEN.
Each 1hsi is an observable or measurable condition predicate, e.g., that the
tension of the fan belt is low or the engine is overheating. Each rhsi[pi] is
a condition, rhsi, that will follow with certainty or probability, Py Thus,

System Development Corporation

30 June 1977 4-54 TM-5903/000/00
R1 IF fan belt tension is low
THEN alternator output will be Tow [.5] AND engine will overheat [.2];
R2 IF ailternator output is low THEN battery charge will be low [.7];
R3 IF battery charge is low THEN car will be difficult to start [.5];
R4 If automatic choke malfunctions OR automatic choke needs adjustment
THEN car will be difficult to start [.8];
R5 IF battery is out of warranty THEN battery charge may be low [.9];
R6 IF coolant is lost OR coolant system pressure cannot be maintained
THEN engine will overheat [.7];
9 R7 IF there is a high resistance short AND fuse is not blown
THEN battery charge will be low [.8];
R8 IF voltage regulator output is high
THEN battery will boil off fluid [.3];
R9 IF battery fluid is low THEN battery charge will be low [.4];

Figure 4.11. Production Rules for Automotive System KS

System Development Corporation
30 June 1977 4-55 TM-5903/000/00

rule R1 says that, if the tension of the fan belt is low, then there are two
possible consequences:

(1) Trat about one-half of the time the output of the alternator will
be low, and

(2) About one-fifth of the time the engine will overheat.

The other production rules, R2-R9, are interpreted in a similar manner.

A fact file in the system is shown in Figure 4.12. The information included
for each observation or measure is the agent from whom to gather data and the
relative difficulty (or cost) of gathering the data. There are four possible
agents for data gathering: (1) the customer (Cust), (2) the histct ical data
base,, (3) inspection by the service manager (SrvM), and (4) measuremeni by the
mechanic (Mech). The difficulty information will be combined with the confi-
dence factors in the production rules to formulate the most cost-effective and
timely plan for the needed diagnostics and repairs.

A

Assume that a customer arrives at the agency with the vague complaint that his

i car is hard to start. The service manager enters this information, including

E appropriate customer and vehicle identification. The system then grows a struc-
ture similar to that shown in Figure 4.13. The boxes are labeled with observ-
able or measurable symptoms and are connected by arrows labeled with the names
of the production rule they represent. To the far right of each of the unknown
values (e.g., the box labels, such as battery-fluid level), the associated
agent and relative difficulty are lTisted. At this point, the system would 3
check the data base for information about the battery's warranty. If nothing
decisive was fecund, then the customer would be asked whether the car was run-
ning hot, and the service manager would continue to make on-the-spot observa-
tions. Diagnostic procedures for causes not ruled out by the procedure to date

woula then be placed on an ordered schedule for a mechanic. The ordering would
be based upon (1) cost effectiveness--a function of test difficulty, estimated

System Development Corporation

30 June 1977 4-56 TM-5903/000/00
OBSERVATIONS AGENT DIFFICULTY
Alternator output level Mech 4
Battery charge Tevel Mech 3
Battery fluid level SrvR 2
Choke adjustment Mech 5
Choke function Mech 5
Coolant Tevel SrvR 2
Coolant system pressure Mech 5
Difficulty to start Cust 1
Engine temperature Cust 1
Fan belt tension Mech 3
Fuse condition SrvR 2
Short in electric system Mech 8
Voltage regulator Tevel Mech 4
Warranties Data Base 0

Figure 4.12. Data Gathering Procedure Fact File

System Development Corporation

30 June 1977 4-57 TM-5903/000/00
AGENTS
R4| Choke |
1 Malfunction Mech (5) |
Difficul 1R4 Choke Out of
ifficult oke Out o
To Start :,_ Adjustment Mech (5)
R7| Fuses Not
: Blown SrvR (2)
& -j
i |
Short-High |
| Resistance Mech (8) :
R3| Battery |
_J Charge Low Mech (3)
Rs| Battery Out
L‘ of Warranty DB (0) |
R9 | Battery R8 SrvR (2) '
| Fluid Low [® | '
i
Voltage |
Regulator Mech (4) |
Output High 9
R2 | Ailternator R1 |
Output Low —— Mech (4)
Low Fan Belt ; J
Tension Mech (3) :

: : R1
High Engine | R1| Cust (1)

Temperature

Figure 4.13. Example Flow in Auto Diagnostic System

System Development Corporation
30 June 1977 4-58 TM-5903/000/00

probability of being necessary, and ability to eliminate other tests; and
(2) availability of resources--specialty mechanics and test equipment.

The structure shown in Figure 4.13 was grown by an algorithm called back
chaining. A condition--in this case, "difficult to start"--is taken as a given,
and the goal of the system is to find the cause(s). Note that the production
rules state causes, then effects. Thus, the rules are used as if the knowledge
possessed a kind of symmetry. The back-chaining algorithm is

(1) Find ali rules that have the initial or derived condition as their
consequence--in this instance, rules R3 and R4.

(2) Call the antecedents of these rules' derived conditions.

(3) Repeat steps (1) and (2), and terminate when no more can be done.

Figure 4.14 graphically shows the kind of structure grown for each kind of rule
format. In each example in the figure, c1 is the initial or a derived condition.

Rule E1 is the simplest; al is added to the set of derived cenditions. Rule E2
states that if al is the case, then both ¢l and c2 ought to follow. Thus, al
is a derived condition, and c2 may or may not be considered a derived condition,
depending upon the particular strategy used by the system. Rule E3 is really
equivalent to two independent rules "IF al THEN c1" and "IF al THEN c2.”
Therefore, al is added to the set of derived conditions, and the c2 part is
ignored. Rule E4 states that both al and a2 must occur to support the conclu-
sion, cl. Therefore, both are derived conditions. If either al or a2 is found
to not hol.. then the search for support for the other can be discontinued.
Rule E5 is equivalent to the two separate rules "IF al THEN c1" and "IF a2

THEN c2." Thus, both al and a2 are added to the set of derived conditions.

System Development Corporation

30 June 1977 4-59
E1 IF a1 THEN c1
cl |je—e al
E2 IF a1 THEN c1 AND c2
cl (@
al
E3 IF a1 THEN c1 OR c2
cl [e—— al
E4 IF a1 AND a2 THEN c1
T al
|
¢l |[@— &
]
|
l a2
E5 IF a1 OR a2 THEN c1
" i
cl
Figure 4.14. Back Chaining

TM-5903/000/00

i St e

TR

System Development Corporation
30 June 1977 4-60 TM-5903/000/00

In this example and discussion, we have omitted several problems that can arise.
For example, suppose that rule R8 (in Figure 4-11) had been written more accu-
rately as the two rules

R8~ If voltage regulator output is high
THEN the battery will overcharge

R8~- IF battery is overcharged
THEN battery will boil off fluid

With these new rules, a fragment of structure shown in Figure 4.13 would be
replaced by that shown in Figure 4.15. Now, the interesting conclusion is that
a high battery charge implies a low battery charge. This is an apparent con-
tradiction, since both conditions cannot hold at the same time. This kind of
situation can often arise in unpredicted ways if the system contains many
rules--more than a few dozen. In this instance, the contradiction is more
apparent than real--i.e., the charge of the battery will oscillate between high
and low as the battery fluid is replaced and boils off, respectively. So, in a
sense, there is a missing rule of the form that adding fluid to a battery whose
charge and fluid levels are low will probably allow the battery to return to
normal conditions. However, to handle this kind of situation in general, it is
necessary that the control mechanism or CE have some knowledge about how to
proceed when faced with apparent conflicts and contradictions. One virtue of

production systems is that ad hoc knowledge may be relatively easily incorpo-
rated in the system to handle this.

Another issue not yet raised is that the structure shown in the above figures
may actually be a graph rather than a simple tree. This may arise from several
causes. For example, assume that high engine temperature caused battery fluid
to boil off (call this Rule R10). Then Figure 4.16 would show a fragment of
the resulting graph. Another cause of graph structure is loops within the
rules; the simplest cause is two conditions, either of which can cause the
other to cccur. For example, high engine temperature causes coolant to boil
off, and low coolant Tevel will cause the engine to overheet. A major problem

System Development Corporation

30 June 1977 4-61 TM-5903/000/00
) R?7
Battery R5
chaf” et s
Low
R2 R9 Battery R8"" Battery R8'| Voltage
Fluid] Charge - Req. Output
Low High High
Figure 4.15. Fragment of Graph Structure

with the graph structure that occurs is development of appropriate mathematical
techniques to handle the generation of the confidence (or probability) factors
used to guide the system.

The remainder of this section discusses some of the key features and character-
istics of the use of production rules to make a KS. Figure 4.17 summarizes the
following discussion in showing some of the interactions among the characteris-
tics.* An arrow labeled with a "+" means that the source characteristic
enhances the destination characteristic; the opposite is true for arrows labeled
with "-".

Rules as primitive actions. In a production system, the production rule is the

knowledge chunk. The smallest grain of behavior in which the system can engage

is the application of a single rule.

Indirect limited interaction channel.
They cannot "call" each other as subroutines.

Rules are constrained to see and modify

only the workspace. To achieve

*The discussion and figure are based, with some modifications, on [DAVIS75].

System Development Corporation
30 June 1977 TM-5903/000/00

P T e

RS ~ R8
Battery R9 Battery R10 [High Engine R1 Low Fan Belt
Charge Low [® Fluid Low | Temperature [Tension
R2 Alternator R1

Output Low

Figure 4.16. Fragment of Graph Structure

the effect of a call, one rule must leave a unique message in the workspace
that is recognized only by the invoked rule. This becomes more difficult to do
as the number of rules increases and is a method that quickly destroys the
major benefits of using production systems, such as independence of the knowl-
edge chunks.

Constrained format. The LHS and RHS of the rules are normally built from a

simple set of primitives through a straightforward syntax. Even though some
systems allow programmer-supplied predicates and procedures to be invoked by
the rule's LHS and RHS, some restrictions are obeyed: (1) the operation of
the LHS will not modify the workspace, and (2) operation of the RHS will per-
form only conceptually simple actions. These restrictions, like those men-
tioned in the previous paragraph, are accepted so that the major advantages of
the production (such as ability to explain results) will not be compromised.

Machine readability. Because of the constrained format of production rules,

machine readability is enhanced. Also, compilation by the knowledge acquisition
mechanism (such as computing links between one rule's consequence and another

rule's antecedent) is simplified.

—

System Development Corporation
30 June 1977 4-63 TM-5903/000/G0

'y

:_':::lrte:; Visibili —| RulesAs |4+ Explana-
: DI g Primitive | tions of
Interaction of Behavior Actions Solution

Channel
+ T*’

Modifiability +
of Behavior

I+

Conflict-
Resolution
Strategy

L:

Consistence
Checking

v

14'

Modularity l o

e

Extensibility

i|+

Constrained +t
Format

l+

Machine
Readability

Figure 4.17. Facets of Production Systems

System Development Corporation
30 June 1977 4-64 TM-5903/000/00

Modularity. Since direct interaction among rules is constrained, it is
possible to modify rules, delete rules, and add new rules as necessary because
other rules are not directly dependent upon the rules that are changed or
added.

Extensibility. Extensibility is a corollary of modularity. The ability to
augment the system to perform in an expanded domain is obviously enhanced by
the modularity and Tow interaction among the original rule set. On the other
hand, extensibility may be hampered because of format constraints if the
expanded domain necessitates the use of a more robust set of primitives.

Visibility of behavior flow. The issue here is not the external manifestations

of the system's performance; rather, it is the ability to understand how the
system proceeds to a solution by a step-by-step analysis of its internal work-
ing. In tracing a production system with a large rule set, one may be sur-
prised at how often it goes off on nonproductive tangents before exhibiting
reasonable goal-directed activity. Several things account for this. One is
that application of a single rule is the system's step size, and all rules get
an opportunity to examine intermediate results. Therefore, even when one rule
"knows" the rule most likely to continue on a path to a solution, the limit on
direct rule-to-rule communication inhibits the system from focusing attention.
One method of increasing goal-directed behavior in a production system is the
use of higher-level, strategic and tactical rules to guide the conflict-
resolution strategy. For an interesting discussion of this approach, see
[ENGLEMORE77] and [DAVIS76].

Modifiability of behavior. This is a problem closely akin to extensibility.

However, the issue here is the ability to modify the rules so that the system
focuses attention better or more quickly. This is obviously aided by modular-
ity of the rule set and hindered by the problems that arise when explicit con-

trol and sequencing are desired in a production system.

PR NS R

i

e i e’

Svstem Development Corporation
30 June 1977 4-65 TM-5903/000/00

Explanation of solution. A production system can (and usually does) explain

and validate its solutions to problems by displaying the rules it used to
derive the solutions. Because the rules are of a situation/conclusion form and
are a reasonable chunk size, the explanation method is appealing. However, if
the behavior is too erratic (see the paragraph above on visibility of behavior
flow), the system may provide an excellent explanation and defense of a seem-
ingly silly activity. Modularity of the rules also contributes to the accepta-
bility of the explanation because each rule is reasonably well self-contained.

Conflict-resolution strategy. Conflict-resolution strategy has an effect on

the ability to extend the system and/or modify its behavior. For example, if
the rules are ordered, it may take a great deal of work to insert a new rule
or modify an old one, because the ordering enforces an implicit dependency
among the members of the rule set.

Consistency checking. Some control mechanisms will not work properly if the

rule set can generate inconsistent results. (See the example shown in Fig-

ure 4.15.) For such systems, it is desirable that the knowledge-acquisition
mechanism be able to determine whether such conflicts can arise. This endeavor
is aided by the simpliicity of format and ease of machine processing, but can be
difficult (if not impossible) with some conflict-resolution strategies because
the strategy determines whether the conflict can ever arise and, is so, how it
will be resolved.

Some works that describe the philosophy and theory of production systems are:
[CHOMSKY63], [DAVIS76 and 75], [GALLER70], [HEDRICK76 and 74], [J. McDERMOTT76a
and 76b], [MINSKY67], [J. MOORE73], [NEWELL76a], [POST43 and 36], and [VERE77].
Some work on the use of production systems for psychological modeling are
[MORAN73a], [NEWELL72b], and [WATERMAN75, 74 and 70].

lorks using production system models in the field of medical applications are:
[DAVIS77 and 76], and [SHORTLIFFE76, 75a, 75b, and 73]. Some works relating to

System Development Corporation
30 June 1977 4-66 TM-5903/000/00

cnemistry, molecular structure, and genetics are [BUCHANAN76a, 76b, 72, and 69],
CENGLEMORE77], [FEIGENBAUM71], [LEDERBERG68], [MARTIN75], and [MICHIE73]. Some
strer works about usage of production rules are: [ANDERSON76a and 76b],
[BARNETT76b], [COLLINS76], [EVANS64], [FLOYD61], [FORGY76], and [RYCHENER76

and 75].

4.1.2.5 Semantic Networks

A semantic network is a method of representing declarative knowledge about the
relations among entities. The major application has been to embody non-
syntactic knowledge (e.g., semantics and pragmatics) in natural-language-
understanding systems, but this has not been the only use. Because of their
inherent generality and naturalness, semantic networks have been used to repre-
sent highly interrelated information that cannot be properly processed by stand-
ard data (base) management techniques.

A semantic network is a KS. It is built up from knowledge chunks that are
instances of a relation. The format of a chunk is

)

r‘e](a1---an

—

where rel is a relation name and the ordered tuple, (a]...an), is in the rela-
tion rel. For example,

ISA(DOG ,MAMMAL)

means (DOG, MAMMAL) is a member of the relation ISA. ISA is conventionally
taken to be the relation, rore-specific-example-of. Thus, the above is the

System Development Corporation
30 June 1977 4-67 TM-5903/000/00

representation of the fact that a DOG is a specific kind of MAMMAL. For the
example,

BETWEEN(2,1,5)
the interpretation is the obvious one; namely, 2 is between 1 and 5.

Figure 4.18 shows a semantic network (or "net"). The top of the figure lists
the instances of relations using the relation names TEMP, LOC, COLOR, SIZE,
ISA, and BETWEEN. (The latter two are defined as above.) TEMP(a,b) means a is
the temperature of b; LOC(a,b) means a is located at b; COLOR(a,b) means that

a is the color of b; and SIZE(a,b) means a is the size of b. The knowledge in
a semantic net is given meaning, as damonstrated here, by defining the relation
names and other symbols used in the instances of relations, in terms of exter-
nal entities. Fortunately, the correspondences of names to external entities
can be made highly mnemonic by careful choice of the names.

The graph in the middle of Figure 4.18 shows exactly the same knowledge that is
in the set of instances at the top of the figure. The entity names are con-
nected by arrows labeled with appropriate relation names. For example, the
instance,

ISA(DOG ,MAMMAL)
produces the graph fragment
ISA

DOG ~————> MAMMAL

Production of graph fragments for other than binary relations is more difficult
but still straightforward--see the example of BETWEEN in the figure.

System Development Corporation
30 June 1977 4-68 TM-5903/000/00

RELATIONS

TEMP (WARM-BLOODED, MAMMAL)

ISA (DOG, MAMMAL) ISA (CAT, MAMMAL)

ISA (FIDO, DOG) ISA (BOWSER, DOG) ISA (PUFF, CAT)

LOC (MARY'S, FIDO) LOC (FIREHOUSE, BOWSER) LOC (BOB'S, PUFF)
COLOR (TAN, FIDO) COLOR (TAN, BOWSER) COLOR (BLACK, PUFF)
SIZE (401b, FIDO) SI!ZE (14lb, BOWSER) SIZE (4Ib, PUFF)

BETWEEN (MARY’S, FIREHOUSE, BOB’S)

SEMANTIC NETWORK

MAMMAL
ISA
/ TEMP
WARM-BLOODED CAT
/ \ 1SA
FIDO BOWSER PUFF
4
COLOR e
SIZE '
SIZE SIZE COLOR
MARY’'s 40lb AN 14b FIREHOUSE 4y, BLACK BOB'S

/
N /7
*“BETWEEN"

RULES OF INFERENCE

ISA(x,y) AISAl(y,z) =>ISA(x,2)
SIZE(x,y) ASIZE(u,v) Ax < u=>SMALLER(y,v)
ISA(x,y) Ar(u,y) =>r(u,x)

Figure 4.18. Example Semantic Network

System Development Corporation
30 June 1977 4-69 TM-5903/000/00

The external format of knowledge in a semantic network is usually very similar
to the one used herein with the addition of a capability to factor common
parts--for example, something like:

ISA({DOG CAT3}, MAMMAL) or

SIZE{(40 1b, FIDO)(14 1b, BOWSER)(4 1b, PUFF)}
However, the internal storage of the semantic network closely corresponds to
the graphical presentation--that is, a network structure built using pointers
and list structures. The explicit connections among the entities enhances

efficiency of programs that search through the semantic network.

The bottom of Figure 4.18 gives some examples of inference rules for the seman-

tic network. The format of the rules is well-formed fcrmulae from the predi-
cate calculus. It is also possible to represent the inference rules as a
production system. This has the advantage of allowing procedural knowledge

to be used to test for complex enabling conditions that might be difficult to
express as WFFS. Variables, written as small Tletters, are assumed to be uni-
versally quantified. The first rule says that (for all x, y, and z) if x is a
y and y is a z, then » is also a z. An example of this is: FIDO is a DOG and
a DOG is a MAMMAL; therefore, FIDO is a MAMMAL. The second rule says that if
y and v are two entities that "have" STZE, and the size of y is less than the
size of v, then y is SMALLER than v. Thus, the instance of the relation,

SMALLER(PUFF ,BOWSER)
This inference rule defines instances of relations whose names do not appear

explicitly in the semantic network. Contrast this to the first rule above,
which states that ISA is transitive.

——————

System Development Corporation
30 June 1977 4-70 TM-5903/000/00

The last example inference rule says that, if x is a y, and y has a property
conferred by the binary relation, r, then x has the same property conferred by
r, i.e., properties are inherited. Thus, FIDO is a MAMMAL (by the transitivity
of ISA--first rule), and a MAMMAL has the property, WARM-BLOODED (conferred by
the relation TEMP), therefore, FIDO is WARM-BLCODED. Formally,

ISA(FIDO,D0G) A ISA(DOG,MAMMAL)—ISA(FIDO,MAMMAL)

ISA(FIDO,MAMMAL) A TEMP(WARM-BLOODED,MAMMAL)—=>TEMP(FIDO,
WARN-BLOODED)

However, the indiscriminate use of the third rule can cause derivation of

incorrect results. For example,

ISA(DOG,MAMMAL) A ISA(CAT,MAMMAL)=>ISA(DOG,CAT)

In order to avoid this kind of problem, it is necessary to have some (non-
syntactic) knowledge about the relations to which inference rules are applied.
One possible solution is to have a rule, such as the third example rule, for
each relation that is inheritable. (The variable, r, is replaced by the rela-
tion name in the rule.) Another solution is to embed the interface rules in
the CE along with the necessary ad hoc knowledge to avoid the problems. Both
approaches cause problems, however, if the number of relations occurring in
the semantic network is large or if the relation set can be modified or

expanded.

A more general appraoch to the problem treats relation names and entity names
more uniformly. For example, temperature is defined as an inheritable property

by an instance like

INHERITABLE(TEMP)

s s bl

System Development Corporation
30 June 1977 4-71 TM-5903/000/00

The third inference rule is then rewritten as
ISA(Xx,y) A r(usy) A INHERITABLE(r)=>r(u,x)

With this approach, relations can be arguments to relations, and hence have the

same properties as other entities. This is similar to higher-order rules in the
predicate calculus (see section 4.1.2.3). There are several advantages to this.
For one thirg, instances such as

ISA(TAN,COLOR)

are allowed and provide a natural method of delineating legal values in a rela-
tion and, therefore, of enhancing error detection and consistency checking.
Another advantage is improved flexibility and expandability. The major draw-
back is a loss in run-time efficiency.

~-7other choice and tradeoff about a semantic network is the decision about
woicn relations and which instances in the relations ought to be stored explic-
itly ana ~nich should be computed via the inference rules. Explicit storage
costs space, and inference rules cost computation time. For all but very small
semantic networks, some inference rules are necessary because the number of
instances of relations can grow in a highly nonlinear way; for the example in
Ffigure 4.18, the number of instances of the relation, SMALLER, grows as a quad-
ratic function of the number of DOGs and CATs.

A technique often used with semantic networks is to make a (somewhat arbitrary)
distinction between general knowledge and specific knowledge and to store the
two in a different manner. Specific knowledge has the general characteristic
of being "low" in the tree--as shown in the middle of the figure. This means
(1) there are few if any chains below it; (2) therefore, properties have simple
values; (3) most entities in the same general classification have all and only

System Development Corporation
30 June 1977 4-72 TM-5903/000/00

a known set of properties; and (4) there are a large number of entities in a
general class. For our example, the specific knowledge can be displayed
tabularly as

ENTITY ISA SIZE COLOR LoC
FIDO DOG 401b TAN MARY 's
BOWSER DOG 141b TAN FIREHOUSE
PUFF CAT 41b BLACK BOB's

The above conditions make it likely that (1) the specific knowledge can be
gathered into a tabular form (perhaps a different form for different classas
of knowledge) by simple mechanical means, and (2) the specific knowledge (which
is usually most of the semantic net) can be kept in relatively inexpensive
secondary storage and even accessed through an efficient, existing data manage-

ment system. The general knowledge (everything else) is kept in primary memory.

Fortunately, most processing by the inference rules occurs on other than the
"bottom" of the network, so that efficiency is maintained.

Semantic networks are by far the best available technology for representing
definitional and relational knowledge that is too complex for ordinary data
management techniques. This is the case because (1) the structure allows for
the inclusion of ad hoc and pathological information, and (2) the utilization
of inference rules permits straightforward enhancement of the inherent repre-
sentational power and completeness.

Or the other hand, there are some disadvantages to the use of semantic networks
= represent knowledge in a KBS. The principal one is that the chunk size is
=21 -1y small. This leads to two problems: (1) instances of relations do not
iena themselves to use in explanations of chains of reasoning developed by the
inference rules--chains can be quite lengthy and tedious, i.e., below the
tnresnold of interest; and (2) processing a semantic net can consume large

System Development Corporation
30 June 1977 4-73 TM-5903/000/00

amounts of computer time. Another disadvantage is that many kinds of knowledge
cannot be expressed (as instances of relations) in a natural manner. Examples
are most procedural knowledge, relative and subordinate knowledge, and quanti-
fied knowledge. (See [WOODS75] for a thorough discussion of these and other
issues associated with the use of semantic networks.)

Some papers and articles about semantic networks and their utilization are:
[DUDA77], [GRIGNETTI75], [MYLOPAULOS75a and 75b], [NORMAN75], [QUILLIAN68],
[SCHANK75a], [SIMMONS73], [TRIGOBOFF76], [WOODS71], and [YAKIMOVSKY76].

4.1.2.6 Frames

A research topic of great current interest in computer representation of knowl-
edge is frame theory. No one has succeeded in defining frames to all research-
ers' satisfaction, but there is a commonality in motivation and in some of the
proposals ta date. The common motivating issues are (1) accommodation of both
declarative and procedural knowledge in the same representational formalism,
(2) accommodation of mundane, ad hoc, and idiosyncratic knowledge along with
that which is more uniform and repetitive in nature, (3) accommodation of par-
tial and somewhat contradictory or inconsistent knowledge, and (4) ability to
plausibly -~eason from a KS with features 1ike the above. Two major issues not
yet dealt with in the emerging theory are explanation of system behavior and
naturalness of the knowledge-acquisition interface. (These issues are related,
and both stem from an unwieldy external format of a frame. See the example
below.)

Some of the common features in proposals about frames are: (1) A frame is a
--owledge chunk that (2) has a collection of definitional and procedural knowl-
_.e abour an cbject, action, or concept. (3) A frame is a complex data struc-
_ .ne %) has named slots corresponding to definitional characteristics and
(5, the api. iy to attach procedural knowledge to the slots and/or the frame
itself. Further, there can be associated with the slots: (6) restrictions on

k ——

|
i
E‘
r

System Development Corporation
30 June 1977 4-74 TM-5903/000/00

the contents (1like data-typing information), (7) default values that can be
static or computod in terms of the values in other slots, and (8) monitors--
procedures that test for and deal with unusual conditions. There can be asso-
ciated with the frame itself: (9) expectations--assumptions or predictions
based upon the existence of an entity described by the frame, (10) methods of
logging and correcting complaints that arise when expectations are not met, and
(11) specialized procedural knowledge for manipulation of the entity.

It is not possibie to give a simple example that demonstrates all the above
features of a frame. Therefore, the example in Figure 4.19 makes no such
claim--it is offered to show some of the intended flavor of a frame system.

The top of the figure gives definitional information about a dog. The first
line states that a dog is a "mammal". The next line means that there is a slot,
named "kind" (of dog), that may be filled with a value of (type) "breed".
("Breed" in this example is itself a frame.) The color of a dog is limited to
one or a mixture of the stated colors by the SUBSET.OF operator. Default
values are indicated by underlining, and the FROM operator is used to pick out
values from other frames. Thus, the combined effect of the phrase FROM color
OF kind is to make the default value for the color of a dog the default for his
breed. Going on, the dog frame has a slot for the number of legs that is
restricted to be no more than four with a default of four, and a weight that

is a positive number with a default weight that is determined by the typical
size of members of the same breed. The state of a dog is either "adult", the
default, or "puppy" if the age is known to be less than one year. The age of

a dog is restricted to a positive number and its default value can be calculated

procedurally by the ‘rivial expression, "now-birthday". The "dog" frame is
finished by declaring birthday to be a date and name to be a "string".

The bottom of the figure shows a frame for "boxer" and declares that boxer is a
breed--but only a breed of dog. The color of a boxer is restricted to one of
the colors "tan", "brown", and "brindle", with a default of "tan". (Note, it
is legal for this to conflict with the dog frame; i.e., brindle is not mentioned

System Development Corporation
30 June 1977 4-75 TM-5903/000/00

dog FRAME ISA mammal
kind breed
color SUBSET.OF {tan brown black white rust}
FROM color OF kind

leggedness 0...4

weight >0, FROM size OF kind
state adult OR puppy if age <l
age >0, now-birthday
birthday date

name string

END dog

boxer FRAME 1.1 breed OF dog

color ONE.OF {tan brown brindle}
size 40...60

tail bobbed OR long

ears bobbed OR floppy

temperment playful

' COMPLAINTS IF weight >100 THEN ASSUME(great dane)
% END boxer

Figure 4.19. Example Frame Definitions

System Development Corporation
30 June 1977 4-76 TM-5903/000/00

~¢.) If this breed did not have a characteristic color restriction, then
-ris slot would be omitted; this would have the effect of not giving a default
assignment for color in the above dog frame.) The next slot says that the size
of a boxer is between 40 and 60 pounds. No default is specified. Thus, the
default value for weight of a boxer in the "dog" frame is just this range
(rather than an exact value) when applied to a boxer. The tail and ears slots
are defined with default value "bobbed" and the respective alternatives of
"long" and "floppy". Temperament is shown to always be playful. The last Tine
shcws an example of a complaint and ad hoc knowledge used to make a recommenda-
tion, namely, if you see a giant boxer, then assume that it might be a Great
Dane instead.

Figure 4.20 shows an example use of frames in a recognition task. The top of
the figure shows some feature values (e.g., color is tan, ears are bobbed) that
have been detected for an object, here identified as number 456. The CE has
matched the known feature values with the available frames and has manufactured
the working hypothesis shown at the bottom of the figure--namely, a boxer dog
that is assumed to have a bobbed tail and to be an adult. It is noted that
this particular boxer (object number 456) is mean and that this is exceptional.
Also, the size of the boxer was only approximately known, but the approximation
has been used in lieu of a more accurate value.

[t is hard to see from this example how the CE goes about this kind of recogni-
tion task. Howaver, a possible scenario would follow these lines. A general
matching procedure would attempt to instantiate all frames in the system until
a reasonable fit was found; in the example, "boxer" is a reasonable match.
Slots that are yet unfiiled would be used to hypothesize other values not yet
detected. For the boxer frame, a bobbed tail would be predicted and put on an
agenda of things to look for. Assuming there was a frame for tails, it might
possibly contain heuristic knowledge about how to more carefully scan the raw
data to confirm or deny the existence of a particular kind of tail. Other

30 June 1977

System Development Corporation

4-77 TM-5903/000/00

LOW-LEVEL INFORMATION

OBJECT 456
color = tan
ears = bobbed
leggedness = ¢
size = 40-45

temperment = mean

TRIAL IDENTIFICATION

[OBJECT 456 ISA dog

kind boxer WITH [color tan

size 40-45

tail ASSUMED bobbed

ears bobbed

temperment EXCEPTIONAL mean]
color tan

leggedness 4

weight 40-45

state ASSUMED adult]

Figure 4.20. Inexact Match by a Frame System

System Development Corporation
30 June 1977 4-78 TM-5903/000/00

activity that could emanate from the boxer frame is the activation of a
complaint. Thus, if the weight of the boxer was too large, the complaint
mechanism could (tentatively) change the identification of the instantiation
of the pboxer frame into one for a Great Dane. There are two advantages to
znis: (1) rather than returning to a very general pattern-matching activity,
a candidate that is highly likely to be right is selected next, and (2) the
siot values for this frame can be transferred to the new frame with little
additional work.

Besides the prediction and correction activity resulting from the partial match
to a frame, a third pfocess can be tried. Namely, if the match is good enough,
then the frame can become more informative. For our example, the transforma-
tion is from a boxer to a boxer dog where more information is absorbed, e.g.,
leggedness.

The above steps (prediction, correction, and inclusion of more information)
continue until all of the Tow-level information is consumed and the correction
activity reaches gquiescence. The belief is that this style of recognition will
be more goal directed--and hence more accurate and efficient~-than general
techniques that depend upon regularity and uniformity of structure.

Some interestirg work using frame representations are [DBOBROW77a, 77b, and 75c],
[DAVIS76], [DUNLAVEY75], (GOLDSTEIN76], [KUIPERS75], [MALHOTRA75b], [MINSKY75],
[RUBIN75b], and [WINOGRAD75].

System Development Corporation
30 June 1977 4-79 TM-5903/000/00

4.1.3 Comparison of Knowledge Representation Techniques and Issues

This section attempts, in an informal way, to compare the six techniques
described in Section 4.1.2 for representing knowledge in a KS. It must be
stated that those six are not the only ones available. They were selected for
analysis because they are the most widely used and best documented, which
suggests that they are the techniques that have been most successful for a
variety of applications. On the other hand, there are many successful systems
and research activities that have used one-of-a-kind techniques and methods or
are attempting to discover new, general methods to enhance the above six. An
example of such a unique endeavor can be found in [KAHN 75]. This work is
cited in particular because it addresses an important issue for problem-
solving systems--namely, techniques for representing knowledge of time depen-
dencies and temporal history. Other examples of specialized representation
techniques are available in the literature on speech understanding systems and
game-playing programs.

4.1.3.1 Comparison of Techniques

Figure 4.21 compares the six described techniques by a variety of criteria.

A three-valued scale is used: Good, Mediocre, and Bad.™ For each criterion,
the full scale range has beer used even though it may be the case that no
technique deserves one of the extremal ratings. For example, none of the
technique; has a form that is really "natural to the expert." That is, none
are technical English with mathematical expressions. However, given only a
three-valued scale, it is desirable to use all of it in order to provide
reasonable discriminations. On the other hand, the relative ratings are merely
the opinion of the authors, and any more than a three-valued scale would imply
unrealistic precision. (The meanings of most of the comparison criteria can
be found in Section 4.1.2.4.)

*
Perhaps, to assuage the feelings of the proponents of each technique, the
scale values should be excellent, great, and good.

_ System Development Corporation
30 June 1977 4-80 TM-5903/000/00

FSM PGM P.CALC PROD S.NET FRAME

Represent declarative KS M B G G G G
Represent procedural KS G G B M B G
Represent credibility factors M M B G M G
Represent meta-knowledge B G M G M M
Represent ac hoc knowledge M G B M M G
Chunk size big big sml med smi big
Aid to explanation B B M G M B
Natural to expert M B M G M B
Modularity M B G G G M
Easy to extend system M B G G G M
Easy to modify behavior M M B M B G
Reusable components M B G M M B
Run-time efficiency M G B M B M
Tolerate inconsistency M M B G B g
Available theory G M G M G B

Figure 4.21. Comparison of Knowledge Representation Techniques

System Development Corporation
30 June 1977 4-81 TM-5903/000/00

In some sense, it is difficult to compare the techniques because, for most
applications, one of them will clearly be more natural than the others. How-
ever, two general comparisons are worthy of some discussion: Predicate
calculus versus production systems, and semantic networks versus frames.

Predicate-calculus and production-system representations invite comparison
because of a striking similarity in their surface appearances. (Consider well-
formed formulae written as implications and production rules written in an
IF-THEN formalism.) In fact, the predicate-calculus representation can be
modeled in a reasonably straightforward way as a production system. However,
the converse is not true, because: (1) production rules may use domain-
specific procedures, (2) production rules have access to a data base in which
to maintain state in a domain-specific manner, (3) production rules may

include confidence factors, (4) production systems can tolerate inconsistent
knowledge, and (5) production rules can describe state-changing operations
better. (See the example of the monkey and bananas problem in Section 4.1.2.3.
The axiom defining each operator must produce a total state description so
that at each stage, consistency can be maintained.)

Obviously, production systems offer a more natural and more efficient tech-
nology for many applications. The value of the predicate calculus is that the
theory of use is highly developed, and, if the system can rely upon the con-
sistency of the knowiedge, then algorithms are available to solve any problem
that has a solution. Another comparison between predicate calculus and pro-
duction systems is chunk size. Because of the five above points, production
rules can express more knowiedge (much of it implicit) for a given (lexical)
size. Also, it appears that the chunk size is more appropriate to the experts
using the system and providing knowledge at the acquisition interface.

The comparison between semantic networks and frames is at best tenuous, Since
there is no agreed-upon definition for frames. However, an attempt at compari-
son is wortnwhile, because some of the differences point out directions in

System Development Corporation
—30 June 1977 4-82 TM-5903/000/00

which research is going in the area of knowledge representation. The first
thing to note is that frames, as we have shown them in Section 4.1.2.6, appear
to “cover" semantic networks. This is evident when one makes a correspondence
between entity names and frame names and slot values, and between relation
names and slot types. With these correspondences in mind, the rest of the
comparison is easier to make.

First, compare the chunk size. In a semantic net, a single relation is a chunk.
For frames, a chunk is the total set of relations in which the entity is
envolved. The second comparison is simply that the frame may have attached
srocedures to assist the general reasoning mechanism in various ad hoc ways,

~d the semantic networks do not. On the other side, the semantic network

more amenable to use with "universal" reasoning principles, e.g., the rules

~¥ inference. Also, uniformity in structure allows the more specific knowledge
ir semantic networks to be handled in less costly ways (e.g., as an external

dé . -ce); frame systems are not as likely to profit from uniformity. In
summ- y Tnen, it appears that frame systems are a better and more efficient
representatinn technique when the domain has a large amount of ad hoc or
partial knowledge and uses many idiosyncratic principles of reasoning. Seman-
tic networks appear better when the domain has a high degree of regularity and
unitormity. It is our guess that the former characteristics better describe
the domains in which non-toy problem-solving KBS ultimately will perform, and,
nence, that frames will ultimately replace semantic networks and the other
representation techniques for most applications. But we do not expect this to
take place before another five or ten years.

4.1.3.2 Knowledge Representation Issues

This section briefly enumerates some of the important problems and hence
research topics in knowledge representation.

Epistomology--A general definition of knowledge and understanding, though not

completely necessary, would provide a common ground for competing theories.

B R I S ST v W W o S R engre——_

System Development Corporation
30 June 1977 4-83 TM-5903/000/00

An important issue in this area is the development of a taxonomy of knoiledge
that would permit various representation and reasoning techniques to be more
adequately compared.

Higher-level knowledge--Included in this are controi knowledge (what to do

next), meta-knowledge (knowledge about knowledge), and self-knowledge (under-
standing limitations and capabilities). The issues are how to represent
higher-level knowledge, where to put it (i.e., in the CE or the KB), and how
to use it effectively.

Confidence factors--The problems are where to get them, where to use them, how

to combine them, and now to interpret them--hence, how they should effect the g
reasoning process. ‘

Explanations--How is a system to incorporate supporting knowledge chunks into
explanations and into defenses of its proposed solutions? The problem arises
because the existing representation techniques are not flexible in format or
chunk size. Hence, the user (and the knowledge-providing expert) must some-
times conform to the system, rather than the (desirable) reverse. The problem
is often made worse when the input knowledge is compiled into a physical form
from which the original chunks cannot be recovered. Also, it is unknown how
higher-level knowledge and confidence factors should be included in
explanations.

Extendability--There are several issues here: Who--the domain expert or the
system--is responsible for maintaining consistency of the KB? If it is the
system, how can such checks be automated? How can partial knowledge be
handled? What knowledge compilation techniques are available that do not
preclude incremental modification and additions? How can the knowledge-
acquisition bottleneck be widened by allowing more natural modes of expression?
This and the last issue, explanations, raise the question of how the system

interface and knowledge-representation methodologies should be related.

System Development Corporation
30 June 1977 4-84 TM-5903/000/00

KS cooperation--In many KB systems, the KB consists of many fact files and

knowledge sources. The issue is how these fact files and knowledge sources
should cooperate, particularly if they are represented by different techniques.
Related topics are: How do different knowledge sources refer to the same
entity? How are discrepancies resolved when different knowledge sources provide
conflicting advice or conclusions? How does the acquisition mechanism know
where to put new chunks? How does the CE know which knowledge source to use

for which problem? How are "infinite loops" avoided when two or more knowledge
sources start passing the buck?

This list of issues about knowledge representation is in no way complete; it
omits open problems concerning a particular representation methodology (which
are, however, briefly covered in the sections about the individual methods),
and we hope it gives some flavor of the kinds of research areas that are cur-

rently being pursued.

e System Development Corporation
30 June 1977 iw - 4-85 TM-5903/000/00

4.2 WORKSPACE REPRESENTATION

The topic discussed in this section is methods for representing the workspace.
The workspace is the encapsulation of the system's current state in a problem-
solving activity. It includes: (1) global variables--computed values, goals,
and input problem parameters; (2) an agenda--a list of activities that can be

done next; and (3) a history--what has been done (and why) to bring the system
to its current state.

The simplest example of a workspace representation is the push-down stack in a
LISP-1ike system. The stack contains the binding. of global variables, return
addresses (a history snapshot), and the values of temporaries. There is no
agenda in a simple system other than the program counter. A more complicated
example is the data base in a production system. It contains the entire state
of the system, including an implicit agenda (the conflict set of rules that

can apply).

_n most ccmputer programs, the workspace can be represented in an ad hoc way
-ing whatever techniques are provided by the containing program-language sys-
te... -cwe.er, this is not always adequate in KB systems because (1) the
capadi ity <o provide explanations is based in part on an ability to find the
trace of events (history) that produced the solution, and (2) a major part of
=77icient plausible reasoning behavior is the procedure for selecting the next
©7ing to do--hence, the necessity for an explicit agenda and visibility of
enough state (global variables) to make informed decisions. Further, if a KBS
hias many «nowledge sources, the workspace representation may be used for
“impedance matching" and to provide a communication channel among them.

Tre remainder of this section will briefly describe a few techniques used to
represent workspaces. No attempt is made to compare these techniques, because
there is rarely a choice; given a knowledge representation technique and a
procedure for reasoning in a domain, the choice of workspace representations
is strictly limited.

!

System Development Corporation
30 June 1977 4-86 TM-5903/000/00

4.2.1 The CMU Blackboard

"he Carnegie-Mellon University (CMU) speech-understanding system, Hearsay II,
employed a novel and interesting workspace representation called a blackboard--
see [ERMAN 75]. The same technique has been adopted for use in a KBS that
determines the structure of a protein from X-ray crystallographic data--see
LENGLEMORE?77].

The blackboard is a data structure that serves as an intermediary among multi-
ple knowledge sources and the system's CE. The blackboard is two dimensional;
one dimension is levels of representation, and the other dimension is time.

In Hearsay II, the levels of representation are conceptual, phrasal, lexical
(words), syllablic, surface-phonemic, phonetic, segmental, and acoustic-
parametric. The concept of level is that an entity at one level (e.g., a word)
is made up of a sequence (in time) of entities at a lower level (e.g., sylla-
bles). (In the protein crystallography system, the levels form a partially
ordered hierarchy instead of a well-ordered set.)

In these systems, a KS examines entities at one level and hypothesizes or con-
firms (the existence of) entities at another (usually adjacent) level. Fig-
ure 4.22 shows the levels and knowledge sources in the Hearsay II system.
Arrows, labeled with KS names, show input and output levels, and some are
bi-directional. An ¢ntity includes several pieces of information: a level
name, time restrictions or boundaries, a name, confidence level, and support.
Support for an entity is the collection of other entities that cause this
entity to exist.

Figure 4.23 shows a fragment of a blackboard. As depicted, the support is
ambiguous. For example, the word BAD at the lexical level could be supported
by the existence of the phonemes B, AH, and D at the phonetic level. However,
the opposite could be true, namely, the word BAD could have been predicted
from higher-level considerations and then caused the phoneme predictions.
Therefore, part of the support representation must include directionality
information. This simple example does not expose another important issue--
competition. For instance, assume the phoneme D was ambiguously recognized

System Development Corporation

30 June 1977 4-87 TM-5903/000/00
- Levels - - Knowledge Sources -
CONCEPTUAL —5
{V\ — =~ = — — —Semantic Word Hypothesizer
PHRASAL o
—Syntactic Parser
-Syntactic Word Hypothesizer
LEXICAL
— — —Phoneme Hypothesizer
SYLLABIC
— —| — — — Word Candidate Generator
A’Phonological Rule Applier
SURFACE- o
PHONEMIC
— — —Phone--Phoneme Synchronizer
PHONETIC 1
-Phone Synthesizer
— — — — | ~Segment--Phone Synchronizer
SEGMENTAL o
_____ Parameter--Segment
Synchronizer
~ —Segmenter-Classifier
PARAMETRIC ©

Figure 4.22. Hearsay II Levels of Representation and
Knowledge Sources (from [ERMAN 75])

System Development Corporation

30 June 1977 4-88 TM-5903/000/00
Time
-
hrasal Noun Phrase
Lexical Bad
Day
Phonemic B AH - D AY

Figure 4.23. Blackboard Example

System Development Corporation
30 June 1977 4-89 TM-5903/000/00

as either a D or a T, then the word BATTY (assuming it was in the system's
lexicon) could be in competition with the shown sequence BAD DAY. In fact,
the blackbcard is an ideal structure for representing this type of competition.
A11 that is done is to use a "third dimension" to allow competing entities to
pile up.

To summarize, a blackboard fills the three roles of a workspace representation
by (1) global variables--the blackboard is the globally visible data structure
in the system; (2) an agenda--when an entity is placed in the blackboard, it
is to be presented to the knowledge sources that have the entity's level as
their input level, and the set of all such presentations that have not yet
been performed are the agenda; and (3) a history--the support represented
explicitly in the blackboard is a trace of the evolution of the system's
state.

System Development Corporation
30 June 1977 4-90 TM-5903/000/00

4.2.2 Move Graphs

Move graphs are one of the better-known methods of representing a workspace.

A good introduction to the topic can be found in [NILSSON 71]. Move graphs
are usually used in problems requiring search. Problems of this kind have,

as given, a start state and a goal state. Both states and all generated inter-
mediate states are represented in a single formalism chosen for the system.

A KS provides operators--mechods of transforming one state description into
another. The transformations allowed by the operators correspond to the legal
moves in a game. The problem is then to find a sequence of operators (moves)
that transform the initial state into the goal state. (For an example of this
kind of problem formulation, see the description of the monkey and bananas
problem in Section 4.1.2.3.)

The nodes in a move graph are the representations of a state; the edges con-
necting the nodes are directed and]abe]éd with the operator that produced the
transformation. Figure 4.24 shows a move graph for the game of tic-tac-toe,
three in a row. The initial state is the empty board and the desired final
state (not yet reached) is three X's in a line. The edges are labeled with
the name of the operator, X or 0O, who has made the move. (Only positions not
equivalent by symmetry are generated.) The graph is made by first placing the
start node on an agenda. The system then loops using the following technique:
Select and remove a node from the agenda and use the KS to generate all legal
successors to the selected node. Link the new nodes to the original and place
them on the ajenda. If none of the new nodes is a goal node, then repeat the
loop. An obvious place for such a system to be smart is when it picks a node

from the agenda and generates all of its successors, a process called expanding

a node.

If the system expands nodes that are on short paths to the goal node, the
performance will be good. In some systems, a KS is used to nrovide knowledge
as to what node should be expanded next. An issue begged by the simple

4-9] System Development Corporation
30 June 1977 TM-5903/000/00

lo

|

<
X| 0O €

XXOQ—-E;—'XXOQ—

X|x|0 €
o

X|x|o <«

Figure 4.24. Game Tree for Tic-Tac-Toe

System Development Corporation
30 June 1977 TM-5903/000/00

4-92

algorithm above is knowing when to quit, i.e., knowing when no solution is
forthcoming.

Figure 4.25 shows a different kind of move graph. The example is a formation
of a plan to get a new table (the goal node). Each node in the graph is a
subgoal of its parent node. (Since this is a graph, a node may have more than
one parent.) The goal "get a table" can be satisfied by satisfying either the
subgoal "make a table" or the subgoal "buy a table" and is thus called an OR
node. The subgoal "buy a table" is satisfied by satisfying both the subgoal
"get money" and "select a store" (at which to buy the table), and is thus
called an AND node. AND nodes in the figure are shown by connecting emanating
edges with an ampersand (&). (The operator names that caused each goal to be
expanded into subgoals have been omitted in the figure but would be present

in an actual implementation.) A workspace representation such as this is
called an AND/OR graph and is used in many systems with a predicate-calculus
or production-rule knowledge sources.

It is interesting to note that the move graph shown in Figure 4.24 is built
with the start state as its root and is expanded until a goal node is pro-
duced (or the system gives up). The AND/OR graph in Figure 4.25, on the other
hand, is built with the goal state as its root. This raises the question of
how to terminate node expansion for a goal-rooted graph. The general procedure
is to continue expansion until a satisfying (to the and/or relations, in this
case) set of nodes have been generated, all of which are primitive. A primi-
tive node is one that poses a problem that is known to be solvable without
search by the systen.

A quick comparison of MOVE graphs with the CMU blackboard described in the
last section uncovers the facts that (1) MOVE graphs have a more uniform
structure that can sometimes be exploited for efficiency, and (2) the CMU
blackboard has a better structure if the problem decomposes into levels of
representation and the system has many knowledge sources. Like the CMU

System Development Corporation
30 June 1977 4-93 TM-5903/000/00

Get a Table

L Make a Table j [Buy a Table 7

& -
L Do It Yourself j ll-lire a Carpenter] T
l~—&—<»—-&—— E--&--— .
L Get Tools LFind Carpenteq ll Get Money 1 j
v
Get Wood

l GetaBIueprint] L Beg] ljorrow] L Sttal 1

'

Select a Store]

Figure 4.25. Example AND/OR Graph.

System Development Corporation
30 June 1977 4-94 TM-5903/000/00

blackboard, move graphs fill our requirements for a workspace representation:
(1) global variables--the graph represents the global data structure and
includes goals and partial results, (2) an agenda--the agenda is the set of
unexpanded nodes, and (3) a history--the labeled links in the graph give a
reason for the existence of each entity.

System Development Corporation
30 June 1977 4-95 TM-5903/000/00

4.2.3 KS Format and Special Methods

in some systems, the workspace can be represented by the same (or a similar)
formalism used to represent a KS. This has the obvious advantage of allowing
the system to assimilate derived knowledge into the KS in a natural manner.
In general, well-formed predicate calculus formulae and production rules do not
lend themselves to this because the structures are too linear; i.e., there is
no explicit connectivity with other structures, so connectivity must be pro-
vided by some method external to the formalism. This is necessary to form an
agenda, provide historical information, and collect the dynamic state into a
viewable whole.

Programs and FSMs also do not make an appropriate workspace representation,
even though there is some connectivity. The problem here is that much of the
state, in a system using these KS representation techniques, is buried in the
interpreter and must be explicated in order for the system to make global
decisions and maintain a history of processing. In some of the AI programming
language systems, a global data base is used to contain deduced information,
current goals, and invocation patterns for the procedures. See, for example
[HEWITT 72]. Semantic networks and frames provide a better representational
formalism than the above four, for representing a workspace. This is in fact
one of the key advantages of frames for a recognition task--namely, partial
informacion about an entity is kept in a form that is virtually identical to
the definitional knowledge in the system. Links and connectivity are thus
automatically provided. See the example in Section 4.1.2.1. Also, see
[BOBROW 77a]. For a discussion of the possibilities and prob]éms with using
semantic retworks as a workspace representation and assimilating knowledge,
see [WOODS 75].

A few interesting approaches and formalisms for representing workspaces are
described in: [BARNETT 75a], [BERNSTEIN 76], [J. MOORE 73], and [WOODS 76].

System Development Corporation
30 June 1977 4-96 TM-5903/000/00

4.3 THE COGNITIVE ENGINE

In a KBS, the primary function of the cognitive engine (CE) is to perform the
task of problem solving. A secondary function of the CE is to explain the
sehavior of the system and support its derived solutions. To accomplish thesc
Tunctions, the CE must (1) control and coordinate system activities and
resources; (2) plausibly reason about domain-specific problems by having
access to and using the contents of the KB, the contents of the workspace,

and knowledge and procedures embedded in the CE; and (3) link the KB with the
interface module(s). This section discusses only (1) and (2). Section 4.4
describes technologies used by the interface modules.

The CE is the most active component of a KBS. That is, it is always instan-
tiated, and it controls the activation and utilization of other system

modules. (For an elaboration of the concept of an active component, see Sec-
tion 4.1.1.4.) Another characterization of a CE js that it is the intelligence
or understanding component of a KBS. This follows from "S understands knowl-
edge K if S uses K wheraver appropriate."--a position espoused and defended in
[J. MOORE 73]. This characterization of CE function is appropriate even though
its activity may, to a degree, be guided by higher-level (control and/or meta)
knowledge in a KS because, at some point, the CE must still resolve any
residual conflicts at whatever level they occur. 1In an "ultimate" KBS, where
all knowledge resided in the KB and the CE was just a rudimentary interpreter,
this would nct be the case; the understanding capability would be distributed
throughout the system. However, no such ultimate system exists today, nor is
it likely to exist in the foreseeable future.

The remainder of this section introduces some of the terminology used to
describe CEs and details a few general techniques used in their construction.
(Some CE technology used only with a particular KS representation is dis-
cussed in Sections 4.1 and 4.2.)

P TSR

——y

System Development Corporation
30 June 1977 4-97 TM-5903/000/00

4.3.1 Terminology, Measurements, and Characterizations oi the CE ’

4.3.1.1 Effectiveness Terminology

A CE is called sound if it produces only correct or "I don't know" solutions,
i.e., it does not produce incorrect solutions. Soundness is of dubious value
for a KBS operating in a domain that includes many problems that can be
(approximately) solved only by inexact methods. It is often better for the
system to make a good guess or derive a small set of the mdgf probable solu-
tions. As used here, soundness is a property of the CE, not of the KB. That
is to say, that the CE rating is independent of the veracity of the knowledge
chunks used to generate a problem solution.

4 CE is called complete if it can always produce a solution to a posed problem
anen a solution exists. A CE can be, in principle, complete even though it
contains some arbitrary Timit on resource expenditure. This is necessary when
the domain may contain undecidable problems (see Section 4.1.2.3 for a short
discussion of the undecidability of the first-order predicate calculus). As
with soundness, we are defining completeness to be a property of the CE,
i.e., in order to be complete, the CE is not required to solve problems for
which necessary knowledge has been omitted from a KS. It is also possible to
talk about completeness of the KB and completeness of the entire KBS in a
comain. However, it is unlikely that there are interesting domains for KBSs
~ere these latter kinds of completeness can be achieved.

A CE is admissible if it always finds a minimal-cost solution when a solution
exists. The cost is taken to mean the cost of using the solution, not neces-
sarily the cost of finding it. A typicel criterion in a state-space search
problem is to find the shortest sequence of operators that transform the
initial state into a goal state. A CE that can always find a solution
sequence of operators (when one exists) is complete--one that always finds a
shortest sequence (when one exists) is admissible. Hence, admissibility

System Development Corporation
30 June 1977 4-98 TM-5903/000/00

impiies completeness; either implies soundness. A problem occurs at this point
because, while soundness may not be a desirable property of a KBS, some weaker
“orm of admissibility is. That is, even though the CE cannot guarantee that all
soiuwtions are correct (perhaps only plausible), it is still proper and necessary
for a system acting as an expert to derive optimal or near-optimal manifesta-
tions of the proposed solutions. We make no attempt herein to improve the
included definitions in light of the demands of KBS technology, but merely note
zn2 issue. (These definitions originate from aspects of the formal theory of
credicate calculus and theorem proving.)

4.3.1.2 Efficiency Terminology

desides the above definitions, which relate to problem-solving potential, there
is another class of characterizations that deal with efficiency. Efficiency is
not as easy to measure for KBS as it is for other kinds of computer systems,
because run time and dynamic memory consumption of a KBS are often highly non-
linear functions of some problem parameter. In many cases, the function is not
known, making theoretical comparison difficult. In other cases, the parameter
is something 1ike the number of operators necessary to transform the initial
state into a goal state--a parameter that is not available until after the sys-
tem has solved the problem.

Two efficiency measures, defined for systems using move graphs as their work-
space representition or any kind of state-space search technique, are penetrance
and branching factor. The penetrance, P, is defined as

O
1
-4

where L is the length of the derived path from the initial state (or node) to
the goal, and T is the total number of states (or nodes) generated while search-
ing for a solution. If the CE proceeds directly to a solution without generat-
ing any false paths or unused states, the penetrance achieved its maximum value,
1. The smaller the value of P, the less directly the system proceeds to problem

System Development Corporation
30 June 1977 4-99 TM-5903/000/00

solution. Since performance is usually non-linear with L, the value of P
generally decreases with increasing L. Theretore, P is often considered as a
function of L, and the values of P(L) are estimated to characterize performance.

Computation of branching factor is made by assuming the existence of a tree
with the same total number of nodes, T, as states produced by the system in
solving a problem. The tree is further assumed to be one in which (1) every
expanded node has B descendants and (2) the tree has paths of length, L, the
number of operators in the solution path of the original problem. Therefore,

T= B’

L
i=0
This can be rewritten as

BEE g
e

and soived for B, the branching factor, by iteration. By definition, B can
never be less than one. Further, small values of B indicate that the system
has made direct progress toward the solution of the problem, while large values
of B indicate that the system has wasted time expanding nodes not used in the
final solution or has included states that have not been further expanded. In
general, the branching factor of admissible systems will be larger than others
because (1) it clearly takes more work to find an optimal solution, and (2) the
value of L in the above formula will be smaller.

“igure 4.26 shows a sketch of a move graph (on the left) with T=15 nodes and a
sciution path (shown by the darkened 1ine) of length L=3. Therefore, the pene-
trance P = L/T = 1/5. To the right is shown a balanced tree with T=15 and L=3.
As can be observed, B=2. (And this is the solution to the above definition,

System Development Corporation
30 June 1977 4-100 TM-5903/000/00

k 40

Figure 4.26. Example Move Graph and Balanced Tree

wWor-
nhonoa
(3]

NZWw=
o

System Development Corporation
30 June 1977 4-101 TM-5903/000/00

{6 95 = (28

time as a function of input length--e.g., the number of words in a sentence

-1)/(2-1).) A measure closely related to these is computation
input to a natural language understanding system.

Usually, the branching factor for a system varies less as a function of L than
does the penetrance because, except for small or trivial problems, the proce-
dures used tend to be more exponential in L than linear. Because of this fact,
research into CE performance does not look for ways to gain linear speedups by,
say, recoding a LISP program into assembly language. Rather, methods are
sought that tamp down the relative branching factor or exponential by some
technique. For example, the alpha-beta search algorithm, discussed below can,
in cooperation with a good KS, search for a solution in a time proportional to

L/2

approximately B~'~, where a straightforward technique will take a time propor-

tional to BL.

The terminology introduced in this and the last subsection is discussed in more
detail in [NILSSON71].

4.3.1.3 Control Terminology

Another class of terminology used to describe a CE details features of its con-
trol and error-nandling mechanisms. These two mechanisms are inseparabie in
most CEs because the knowiedge in the KB is often soft (and in fact confidence
rated), and the rules of interference are often only plausible. The simplest
approacnes are backup and simulated non-determinism; see Sections 4.1.2.1 and
4.1.2.2 for more information.

The input to a Ct is usually a set of initial conditions and a goal. The KB is
used in scme manner to find a method of obtaining the goal given the constraints
imposed by the initial conditions. There are four ways of doing this:

(1) Forward craining--apply the KB to the givens to infer new conditions; con-

tinve in this manner until the goal is satisfied. (2) Back chaining--apply the

KB to the goal tc produce new subgoals; continue in this manner until the

System Development Corporation
30 June 1977 4-102 TM-5903/000/00

initial constraints or primitive conditions (known to be solvable) are reached.
(3) Chain both ways--forward chain from the initial conditions and backward

chain from the goal until a common middle term is produced. (4) Middle term
cnaining--using the KB, guess a middle term and solve separately the problem
of getting from the initial conditions to the middle term and from the middle
term to the original goal; continue in this manner until a solution in terms
of primitives is generated. (This method is also called problem reduction.)

in parsing systems, method 1 is often called bottom-up and methods 2 and 4 are
called top-down strategies.

Figure 4.27 shows an example of the first three of these techniques. The KB
contains three rules: (1) any integer, X, can be replaced by 2X (X»2X); (2) any
even integer, 2X, can be replaced by X (2X»X); and (3) any integer, X, can be
replaced by 3X+! (X»3X+1). The problem is to transfer 4 into 20 using the
permitted operations. The top figure shows forward chaining--i.e., start with
4 and apply the operators until 20 is produced. The middle figure shows back
chaining--i.e., start with the goal, 20, and use the inverse of the above rules
and continue until 4 is produced. The bottom figure shows the chain-both-ways
technique. First, one step of back chaining produces the nodes labeled 10

and 40. Then one step of forward chaining produces the nodes labeled 8, 2,

and 13. Finally, one more step of back chaining is done to produce the nodes
labeled 5, 3, 13, and 80. Since 13 is on both the forward and backward grown
"wave fronts", the process can terminate; otherwise, the steps of forward and
backward chaining would continue to alternate until either a solution was found
or the system gave up.

Another method of classifying a CE is by its directionality. This type of
ciassification is used only when the problem input is linearly ordered, such
as the waveform input to a speech recognition system or the two-dimensional

array of picture information for a vision system. There are two major varieties:
fixed directionality and variable directionality. Fixed directionality is
usually described by terminology such as left-to-right or right-to-left. The

dea is that the system processes its input data in the predetermined direction

System Development Corporation
30 June 1977 4-103 TM-5903/000/00

/ ~ Forward Chaining
8 ™3

ah. a8 nd

©
N
o
o
o
-
N
-

19 * 40
J s
5 3 80 1"'3
% 1
6 160 26 4

5 3 13 80 :

Figure 4.27.

haining Examples

System Development Corporation
30 June 1977 4-104 TM-5903/000/00

until either (1) all data have been consumed and the problem successfully solved
or (2) a block is reached and no further progress can be made. In the latter
case, the system backs up to a point before the block occurred at which an
option was available. At this point, an alternative path is assumed, and proc-
essing of the input is continued in the original direction. This technique is
iterated until either the problem is solved or no more alternatives exist.

A completely variable directionality in a system is often called island driving.

The idea is to start processing the input at the point or points deemed to be
the least ambiguous or contain the most robust clues as to their identity.
These "islands of reliability" are then grown, middle outward, until they col-
lide or a block occurs. If a block occurs, another set of start points are
determined in the unprocessed areas. The rationale behind island driving is
that by starting in areas containing the more certain information, part of the
combinatorial explosion of fixed-directionality schemes will be avoided because
backup will rarely occur across the islands, but only between them. Mixed
strategies have been tried in several systems; e.g., proceed in a fixed direc-
tion until the system gets caught up in significant backup activity. At this
point, hop forward in the fixed direction of processing and attempt to locate
a good region to work in. After completing processing of the forward region,
fill in the hole. This often helps because the region that caused the backup
is now bounded on both sides and because the contents of the bounding regions
may supply additional clues about what ought to be in the hole.

A final way of differentiating CE strategies is via the terminology breadth-
first vs. depth-first. In a breadth-first system, all possible methods of
continuing are attempted in parallel. This is exemplified in Figure 4.27,

where each (horizontal) level of the graph was generated by a single cycle of
the system. In a depth-first system, some path (node, state, etc.) is selected
and a single continuation is attempted, i.e., the node is not fully expanded
all at once. This path continues growing until either the path reaches a solu-
tion or some path-length constraint is violated. In the latter case, the path
is backed up to the deepest node at which an alternative expansion exists. At

System Development Corporation
30 June 1977 4-105 TM-5903/000/00

that point, another path continuation is generated. This process continues
until either a solution is produced or the alternatives that could produce a
solution within the length constraint are exhausted. A depth-first strategy
can be more efficient than a breadth-first one if a good technique exists for
ordering production of path extensions. Figure 4.28 shows an example of a
depth-first strategy combined with back-chaining for the prior problem. A
maximum path length of 4 was used as a constraint, and the order of (inverse)
operator application was (1) N»2N, (2) 2N»N, and (3) N+3N+1. Each node has a
superscript that denotes the order in which the nodes were generated.

For further information on the concepts discussed in this section see:
[P. KLAHR77], [MILLER73], and [NILSSON71].

20!

102

Al

80/ 1311

o—> %

1608 2612 414

/1

3209 5310 5213
Figure 4.28. Depth-First Back Chaining

System Development Corporation
30 June 1977 4-106 TM-5903/000/00

4.3.2 Methods of Implementing the CE

Most methods and techniques used to implement a CE are intimately married to

the choice of a representation technique for the KB. However, there are a few
methods that are general enough to be used with a variety of KB representa-
tions. Two classes of them are discussed below: search methods and modeling/
simulation methods. The former appear in some way in nearly all KB and Al
systems: the latter are used as an alternative to closed-form solution or

search when efficiency considerations so dictate. Pattern-matching techniques,
though widely used, are not described herein. For a general introduction to the
topic, see [KANAL68].

4.3.2.1 Search Techniques

Search techniques form the core technology of KB and AI systems. It is a
cover name for a variety of methods used to look for problem solutions in an
orderly manner. The field is today in a state where, for most problems, a
simple, albeit inefficient, CE can be constructed that represents any point
in the space with dimensions of: (1) depth or breadth first; (2) chaining
methods--backward, forward, etc.; and (3) directionality--fixed or island
driven. In fact, it is usually possible to construct a CE for points in the
above space that are sound, complete, or admissible.* The set of CE algo-
rithms that makes this statement true is domain independent. In general,
this means that each is subject to the effects of combinatorial explosion.
Thus, the real problem with search technology is not merely to find an algo-
rithm with a specified set of characteristics, but to find one that is effi-
cient and does not suffer from combinatorics when handling problems in the
intended area of application. To accomplish this, it is necessary to incor-
porate domain-specific knowledge.

*Without some problem-specific knowledge, some choices are incompatible; e.q.,
depth-first is generally not compatible with completeness or admissibility.

System Development Corporation
30 June 1977 4-107 . TM-5903/000/00

In order to describe places where such knowledge can be used, it is first 4
necessary 0 examine a paradigm of the search technique. Search consists of

five major components: (1) select--pick the next activity to be performed

from the agenda of possible next activities, (2) expand--perform the selected ;
activity, which often means enumeration of some or all of the predecessor
activities; (3) evaluate--compute merit scores for activities created by the
expansion process; (4) prune--discard hopeless cases or those that appear to 1
have 1ittle promise; and (5) terminate--determine whether to continue process-

ing and whether the problem has been sufficiently solved. Given these five
components of a search method, it is obvious that a KS providing accurate

guidance (incorporating domain-specific knowledge) for each can improve system]
performance, often by orders of magnitude.

In many search methods, the selection, evaluation, and prune (if any) are
combined into a uniform numerical technique. The function used for this pur-

pose is called an evaluation function. Its job is to estimate the 1ikelihood,
f(x), that activity x will be useful in finding a solution. Figure 4.29 shows
a simplified algorithm for finding a solution to a search problem using an

evaluation function, f; a termination checker, solution; and an expansion
function, expansion-of. (As shown, no provision is made for picking out the
soiution path; provision is made only for checking to see whether one exists.)
[T tne evaluation function were perfect, then the only activities expanded
would be solutions or activities with at least one descendent that is used in
tne ultimate solution path. Assuming that the termination checker, solution,
is accurate, this algorithm is sound no matter how bad f and expansion of are.
sowever, f either is poor or the domain admits of unbounded path lengths,
then a solution may never be found. Thus, even though the algorithm is sound,
unless expansion-of and f are spectacular, it is neither complete nor

admissibie.

System Development Corporation
30 June 1977 4-108 TM-5903/000/00

IF solution(start) THEN exit with success;
b-Tist({start, f(start)});
loop: IF empty b THEN exit with failure;
n-member of b with highest f value;
delete n from b;
add n to m;
s« expansion_of(n);
FOR x IN s
DO IF solution(x) THEN exit with success;
IF x in b OR x in m THEN do nothing
OTHERWISE add {x, f(x)} to b;
END FOR;
GO TO loop;

Figure 4.29. Search with Evaluation Function

Ar algorithm that improves on the above by being admissible and in some cases
optimally efficient is called A*. The evaluation function, f(x) is the cost
of a solution path constrained to go through node x; hence, its value is to
be minimized. Further, f is assumed to be additive in the cost of going from
one node in a path to another. Thus, if start = NyeeNp = goal is an optimal

m
solution path, then

where K(x,y) is the cost of going from state x to state y in one step. For
any node, n, f can be expressed as

System Development Corporation
30 June 1977 4-109 TM-5903/000/00

.

f(n) = f(start,n) + f(n,goal)

where f(x,y) is. the minimal cost of a path (of perhaps many steps) from x to y.
The above is normally written as

f(n) = g(n) + h(n)

where

g(n) = f(start,n) and h(n) = f(n,goal)

The function, g, is relatively easy to calculate during search. However, h is
not, because it presumes knowledge of the part of the search not yet com-
pleted.* The approach to overcoming this difficulty is to use an approxima-
tion, called a heuristic estimator, %, in place of the exact function, h.

(For some applications, an estimator, 6, is used in place of g as well.) Thus,
A
f is approximated by f as

f(n) = g(n) + h(n)

The A* aljorithm is given in Figure 4.30. To guarantee admissibility, a
necessary condition is that %(n) <h(n) for all n. Another necessary condition
on h is that ﬁ(x)-ﬁ(y)gﬁ(x,y).** Given a particular choice of h, this algo-
rithm has been proved optimal in the sense that no other admissible algorithm
will expand fewer nodes.

*The terminology assumes a forward-chaining search; for backward chaining,
g and h reverse roles.

**This is called the consistency condition. Without this constraint, A* will
still be admissible but no longer optimal.

kil

System Development Corporation
30 June 1977 4-110 TM-5903/000/00

b«1list ({start, ¢, 0, 0});
loop: n<member of b with smallest ? value;
IF solution(n) THEN exit with success;
delete n from b;
add n to m;
s —expansion_of(n);
FOR x IN s
D0 g« third(x) + k(n, x);
Fegth(x);
IF x already in b
THEN IF new f<old f
THEN replace old f with new f
ELSE do nothing
ELSE add {x, n, g, f} to b;
END FOR
IF not empty b THEN GO TO loop;
exit with failure;

Figure 4.30. A* Search Algorithm

The notation {u,v,w,x} in the figure is a data-structure representation of a
node in the workspace--u is a state description, v is the prior node (from
which this one was derived), w is the value of g for this node, and x is the
value of ? for thi node. As opposed to the algorithm shown in Figure 4.29,
this one keeps a back-trace on history of the solution path (using the v field).

The final example of a search technique given in this section is the alpha-
beta algorithm. It is normally used for searching game trees and AND/OR
graphs, respectively, for best moves or minimal-cost solutions. The descrip-
tion herein is for a two-person competitive game, e.g., tic-tac-toe. Then a

h i ; : TR,

—

System Development Corporation
30 June 1977 4-111 TM-5903/000/00

game tree (simple move graph), like that shown in Figure 4.24, can be generated
so that alternating vertical levels correspond to moves by each of the players.
Suppose, further, that the game is complicated enough so that the entire game

tree cannot be generated and analyzed (for example, it has been estimated that

there are about]0]20

unique chess games). An approach to this kind of problem
is to 1imit the length of the move sequences that are examined either to a
fixed maximum length or by an evaluation that can increase the length somewhat
by the intensity of the position generated after a fixed-length look-ahead.
After a length-limited path has been generated, a position is reached that
usually does not represent the termination of the actual game. Therefore,

the value of the position reached can only be approximated--such an approxi-

mation function is called a static evaluator. Given this setup--a move tree

and a static evaluator--the alpha-beta algorithm can be used to prune away
some of the move sequences that must be examined.

Consider the move tree fragment shown in Figure 4.31. Nodes represent possible
(board) configurations and the arcs are labeled with move names. (Values of
the game are written in the nodes.) The two players are named MAX and MIN.

It is MAX's turn to move, and he wishes to find the move that promises the
largest value of the game (as calculated by the static evaluator). MIN, on the
other hand, is naturally trying to make the value of the game as small as pos-
sible. Now assume that move A has been evaluated, and it has been found that
the value of the game is 4 if both MAX and MIN make their best moves from that
point on. Now consider move B by MAX. MIN is shown to have two possible
~2cocnses, moves C and D. C has been evaluated and has a value of 3. There-
fo~=. -7 MAX chooses move B, MIN can guarantee that the value of the game will
sever se nure than 3 (by choosing move C). A smart MAX would not choose such a
v2 when move A is available to him. Hence, there is no need to evaluate

sve D or, for that matter, any other continuations of move B. In a nutshell,

L .~25 is the essence of the alpha-beta algorithm. Of course, this pruning activ-
'ty (e.g., not evaluating move D or its consequences) is done on the whole game
Zree as it is generated and is done in a dual manner for subtrees where MIN's
ioves emanate from the root.

sisaacedy e T YT R y— - —e m RR e e et e o e S v

System Development Corporation
30 June 1977 4-112 TM-5903/000/00

MAX to move

MIN to move

MAX to move

Figure 4.31. Alpha-Beta Pruning Example

A- is obvious from the example in Figure 4.31, the order in which moves are
considered can have a strong effect on pruning. For instance, if move B is
analyzed before move A, then move D would have to be analyzed because the
accaptable Tower bound (4) would not yet have been generated. The pruning
activity of a'pha-beta does not itself use any domain-specific knowledge.

Sucn knowledge can, of course, be used in two places: (1) in the static
evaluator and (2) by establishing the order in which moves are considered.

If the moves are o-~dered in the best possible manner (i.e., best from each
player's point of view when it is his turn to play), then the static eval-
uator will be called only a number of times approximately proportional to BL{Z
where L is the look-ahead depth and B is the average branching factor in an
unpruned move tree. Without alpha-beta, the number of static evaluations is
approximately proportional to BL. The merit of the move ordering determines

where in this range the search algorithm will perform.

fa caon

i iR . o A

System Development Corporation
30 June 1977 4-113 TM-5903/000/00

It is interesting to note that, for a given static evaluator and a fixed policy
on path length before using it, alpha-beta is an admissible search strategy:
that is, it finds the best move. This algorithm has many uses other than game
playing. It can be applied to any situation where conflict can be identified
and strategies are sequences of steps, each of which has consequences, and
impacts the merit of the entire plan. Because of the potential pruning power,
it often pays to formulate a problem in such a way that alpha-beta can be
directly incorporated.

For more information on search methods, the interested reader should consult:
[FULLER73], [GELPERIN77], [MINSKY63], [NILSSON71 and 69], [SIMON74b], and
[SLAGLE69].

4.3.2.2 Modeling and Simulation Techniques

A model is a representation or abstraction of an entity. Thus, a KB is a
model. Section 4.1.2.3 gives a formal definition of a model (also called an
interpretation) using the predicate calculus. A model has components that
correspond to "real word" things, properties of things, and dependencies
among them. The properties and dependencies are of two kinds: (1) generic--
something that is true for all members of a class, e.g., the behavior of any
resistor obeys Ohm's law, and (2) specific--a property or dependency that is
only true in a particular problem, e.g., the temperature of x is 10°C. The
division between generic and specific model information is a somewhat arbitrary
but useful distinction because the generic information can be used to solve a
variety oiv problems. In a sense, the generic information is a KS and the
specific information is a combination of fact file(s) and problem-specific

input parameters.

A simulation is a procedure for manipulating a mode! in a manner consistent
with its properties and dependencies. The generic dependencies are stated as
transformation rules in terms of the specific information. The model has a

System Development Corporation
30 June 1977 4-114 TM-5903/000/00

given initial state, and some independent variable, usually time, is moved
towards a goal by the simulator. The transformation rules describe changes
in the model, i.e., new states of the entities in terms of prior states of
themselves and other entities. Available data from the simulation process
are the intermediate as well as final states. Thus, modeling and simulation
provide an ideal method of observing behavior because all reached states are
necessary and -eflect conditions of the entity being modeled (assuming the
model is fateful). (Contrast this to search techniques where the set of gen-
erated states may or may not be realistic.)

A simple example is now given to clarify some of the above concepts and ter-
minology. The model is of a domain that contains three kinds of components:

(1) (:) --a device that has one or more inputs. The output of (]
at time t+1 is the sum of its inputs at time t.

(2) () --a device with one input. Its output at time t+1 is its
input at time t.

(3) Wires--devices used to connect together the inputs and outputs
of the other two kinds of components.

The generic properties are those described above. The specific information
is the configuration of a circuit built from these kinds of components.

Figure 4,32 shows one such circuit. The top of the figure is a schematic.

The specific information is that there is one component of type (:) (1abeled 1
in the schematic), one component of type (:) (Tabeled 2 in the schematic), and
four wires (A, B, C, and D) with the connections shown. Wire A comes from

the outside and carvies a value of 1 at time 0 and a value of 0 thereafter.
The other wires have an initial value of 0. Using generic information, the
simulation equations can be derived. For this simple example, these equations

can be solved to yield B; = C; = F, and D, = F,_, where F. is the ith

Fibonacci number. However, for more complicated syster.s, the derived equations

System Development Corporation
30 June 1977 4-115 TM-5903/000/00
D
A 1 B 2
+
C

Initial Conditions

A0=1 Ai=° 1<i
BO=C0=DO=0

Specific Information

® 1
&) 2

wire A{ ,1} B{1,2} c{1,1} D{21}

Simulation Equations

Bi=C; = Aji.1*Ci1+D;4

Di =Bjq

Time 6 1 2 3 4 5 &8 72 8 8§ 10
A 1. 0 0 0 0 0 0 0 0 0 0
Be=C; 0 1 1 2 3 5 8 13 21 34 55
D, 00 1 1 2 3 &5 8 13 A

Figure 4.32. Modeling and Simulation Example

System Development Corporation
30 June 1977 4-116 TM-5903/000/00

may not be solvable in closed form, so some form of iteration or simulation
technique would need to be used. The bottom of the figure shows the output

of a simulation run. The value on each wire is given as a function of the
independent variable, time. Even for such a simple example of this, where a
closed-form solution is available, a simulation technique can be valuable--for
instance, to examine system behavior in errorful conditions such as glitches
on one of the wires. It may in fact be faster and cheaper to perform the
simulation than to solve the set of difference equations, particularly if the
errors are introduced via a statistical technique.

In one sense, all of AI and KBS technology is a modeling and simulation tech-
nology. The intent of systems built under these banners is, with some excep-
tions, either to duplicate an expert's performance (perhaps with some
improvements) in a particular problem domain, or to simulate some aspect

of human mental activity and behavior.* In spite of this affinity, only a
few KB and AI systems directly borrow technology from the modeling and simu-
lation field. There are many reasons for this, the most important of which
are that no well-formed theory exists for the entities and kinds of situations
that are modeled, and that size and connectivity are too large for the use of
off-the-shelf techniques. It can further be said that many KB and AI systems
themselves are models, and it is not necessary to use simulation methods to
make this true.

It is interesting to note the pervasive use of the word model in discussing
KBS. For example, the term word model is used to describe a computer's
internalized representation of a situation or state in the external environ-
ment. The terms semantic model and memory model are used to describe the
underlying assumptions in a workspace and/or knowledge-representation scheme.
Also, the terms performance model and model of problem-solving behavior

*The systems of the latter type belong to a subfield of AI called psychological
modeling.

————

System Development Corporation
30 June 1977 4-117 TM-5903/000/00

(or simply behavior model) are used to describe assumptions built into the
processing components and organization of a system. The list of such terms
is virtually endless. In fact, it is our guess that if all the articles
written about KB and Al systems were researched, more than half of them would
use the terms modeling and/or simulation. We would even go on to guess that
about half of these articles coin a new term, to describe their "unique"
approach, that includes the word model.

As stated above, modeling and simulation techniques have an advantage over
search techniques by making behavior more visible. Another advantage is
efficiency. Sadly, however, many, if not most, KBS problems do not lend
themselves to simulation, because these techniques demand a set of transforma-
tion rules that can move the system model from one state to the next in an
orderly and fateful manner. In a way, simulation is a middle point on a
scale, with closed-form solution and search as the end points. In this light,
an interesting trend is developing--special-purpose languages developed for

Al and for simulation are beginning to look more like each other, with SIMULA
:nd its derivities being used in both fields. To the marriage, AI is bringing
.ore “lexibie control structures (so that inexact transformation rules can be
tolerzzen .nd better data representations, while simulation is contributing
Jroven efficient and workable technology.

Tne interested reader should consult a text such as [REITMANN71] for a general
inZroduction to simulation methodology. For a description of what we believe

to oe the most interesting of the special purpose simulation languages, see
_DAHL73]. Other articles of more direct relevance to KBS are: [BOBROW75b],
“iROWN75b], [GRIGNETTI75], [MARK76], and [MORAN73a].

iR

System Development Corporation
30 June 1977 4-118 TM-5903/000/00

4.3.3 CE Issues

There are many open problems associated with methods of implementing a CE for
a knowledge-based system. However, most of these problems and issues are a
dual of a problem or issue in representing a KS. For example, a CE problem,
focus of attention, concerns itself with the issue of how to guide search so
that the system expands its resources on important things and ignores others.
The corresponding KS problem is methods of representing higher-level meta and
co~trol knowledge.

In some sense. the KB can be viewed as the encapsulation of knowledge in a

KBS using orderly and consistent theories, and the CE is what is left over.
Thus, the CE is the representation of all the knowledge that could not be
captured appropriately in the KB but must still be approximated somewhere in
the system in order to solve problems. It is no surprise, then, that the open
problems are duals. Therefore, it is clear that the major problems and issues
in KBS technology are those concerning the KS and their techniques of
representation.

A CE problem that is very mundane yet important is knowing when to give up.
For a domain without a decidable problem-solving procedure (such as theorem
proving), the issue is theoretical. But even in a domain where all problems
could be solved given enough resources, it may not be worth the effort because
of cost. A generalization of this is how to terminate fruitless paths during
search, e.g., knowing when to give up a subproblem. This is slightly differ-
ent from the focuc<-of-attention issue, which asks for methods that refrain

from ever starting down bad paths.

Another CE problem is knowing how to approximate or reason plausibly. An
examination of the preceding sections leaves one with the impression that a
KBS reasons plausibly, because the contents of the KS are an approximation.
The actual reasonsing techniques in the CE are fairly brittle and formal.

MRl bl s e S i s+ A

System Development Corporation
30 June 1977 4-119 TM-5903/000/00

Thus, the issue is how to reason plausibly as a CE option whether or not the
KB is exact. Interrelated with this is development of procedures and the
mathematical theory for generating and using confidence factors as merit
estimators.

A final issue, raised by Moore and Newell [MOOREJ73], is that there exists no
space of problem-solving methods. Only a handful of general techniques are
now available. Further, no good taxonomy exists so that untried methods can
quickly be identified as points in the space (spanned by the taxonomy). It
may be the case that this is the way it must be; methods of applying and using
knowledge are actually ad hoc, and no underlying general set of descriptors
can have the necessary organizational power. If this is a valid statement,
then KBS technology will continue to evolve slowly rather than taking a few
quantum jumps to the "ultimate" systems.

System Development Corporation
30 June 1977 4-120 TM-5903/000/00

4.4 THE INTERFACE

The interface component of a KBS provides the necessary connections and
communicaticns with the environment and user set. It is not always engineered
as a separate module in the system; usually it is integrated into the CE and
accesses the KB. This section, for reasons of clarity, discusses the inter-
face as if it were distinct. A good introduction to the topics covered in :
this section may be found in [DAVIS76].

The interface has three logical parts: the user interface, the expert inter-

face, and the external data interface. The user interface accepts problem
statements from the user, his responses to system generated queries, and his
requests for explanations. Further, it displays results, prompts the user,
and provides him with the requested explanations. The expert interface is

the system's port for knowledge acquisition and is, therefore, used to augment
or modify the KB. It is also sometimes used by an implementor for system
debugging. The external data interface is used to input problem paramsters,
communicate with external files, and send results or directions to other
automated systems. Since the functions of the external interface do not gen-
erally make use of singular or interesting technology, they are not further
discussed below. However, this interface will grow in importance as KB sys-
tems start wcrking in expanded problem domains. For example, a complete
medical KBS for hospital use would be connected with pharmacy records, patient
history files, patient monitoring devices, duty rosters, etc.

Usually, the user and expert interfaces communicate through a common physical
device such as a time-sharing console. Also, the entire interface borrows
many capabilities and services provided by the host operating system, such as
access methods and editors. The interesting technology associated with the
interface is not those; rather, it is the methods used to transform between
the human-engineered external formats and the more intricate internal physical
and logical formats needed for the CE, KS, and workspace representations.

System Development Corporation
30 June 1977 4-121 TM-5903/000/00

4.4.1 The User Interface

The user interface is the most important component of a KBS in determining its
acceptability to the practitioners of the intended domain. In general, they are
neither computer scientists nor programmers, and may view the computer, espe-
cially a KBS, as a feared and unworthy competitor. The quickest way to prove
the point is by demonstrating simple linguistic stupidity at the interface.
Besides guarding against (perhaps justified) paranoia, a properly functioning
user interface will smooth out and minimize the problems associated with learn-
ing any new system, and in the long run improve system productivity by making

it possible for the users to be more cooperatli: in problem-solving activities.

In order to qualify as a KBS, the user interface must, at a minimum, be inter-
active and use domain-specific jargon. The reason for requiring the system to |
be interactive is simply that the state of the art does not provide techniques
for going from problem statement to "best" answer without additional informa-
tion that must be solicited from the user. The problem with providing ini-
tially, along with the problem statement, all information that might conceiv-
ably be needed, is that most of it is unnecessary. Such a procedure would be

a waste of time and irksome to the user. Another reasoning for wanting a KBS
to be interactive is so that explanations of system behavior and results can be
solicited. Even though we have not made availability of explanations a pre-

reguisite for calling a system a KBS, we strongly feel that without such a H

capability, no system will gain field acceptance. Such a system can be of -
immense interest and value to a computer scientist but still not fulfill the !
purpose of a KBS--namely, to be used in a problem-solving domain by practitioners
in that domain.

Besides using domain-specific jargon, many KB systems accept and output infor-
mation using an English-1like natural language. Since handling natural language
and all of its complexities is equivalent to solving the entire problem of
machine understanding and natural intelligence simulation, it should not be

System Development Corporation
30 June 1977 4-122 TM-5903/000/00

expected in a KBS. Fortunately, some inherent constraints and simple methods
make the implementation of a suffucient subset tractable. An example is that
the system usually takes the initiative in asking questions. When questions to
the user are of the form "What is the value of x?" rather than "What's new?",
understanding the input is relatively straightforward. Also, much of the
ambiguity of natural language disappears when the dialog is restricted to a
particular domain and it is known that the user is engaged in goal-oriented
problem-solving activity.

Another desirable characteristic of the user interface is soft failure. That
is, a KBS should not blow up because the user makes a mistake, nor should it
conceal its problems. For example, when an input is not fully understood by
the system, the user should not only be told, but should also be given guidance
as to what are accep%able responses. A useful technique to smooth over some
problems of this sort is a spelling corrector. (See [TEITLEMAN72].)

Besides the above-mentioned capabilities of the user interface, it is desirable
that it be able to provide some self-knowledge to the user. By this it is meant
that the system be able to explain how it is used and that the user be able to
ask questions such as "Can you handle prcblems about x?" or "What do you know
about Y?" A system with self-knowledge available has the potential to accommo-
date new users in a ireasonable manner.

4.4.1.1 User Input

Several technique have been used to implement the input side of the user
interface. The simplest one, mentioned above, is for the system to maintain the
initiative so that the form of the user's input can be anticipated with a great
deal of certainty. Another, ad hoc but reasonably powerful, technique is that
introduced in ELIZA [Weizenbaum 66]. ELIZA is a system that (humorously)
simulated a Rogerian psychiatrist. Inputs are matched to patterns like

$; X, { IS|ARE} NOT $,.

% System Development Corporation
30 June 1977 4-123 TM-5903/000/00

where $i matches any string of words and X; matches any single word. Responses
are built up by giving corresponding output patterns such as

WHAT IF x,; WERE $2?

1
Given the input “Joe's wife, Mary, is not at home", the system could produce
the response, "What if Mary were at home?" This is accomplished by matching
$2 to "Joe's wife," X to "Mary," and $2 to "at home." ELIZA and other systems

using this kind of matching technique can do a better job of "understanding"
than one might imagine as long as the domain and style of dialog is sufficiently
constrained so that the pattern writer can properly anticipate what kind of
language will be used.

More powerful techniques using better language models are also available. In
fact, the purpose of many Al systems is just to deal with natural language input.
See, for example [NORMAN75], [SCHANK75a], and [WOODS71]. Perhaps the best

known and most widely used technique for parsing natural language is the Aug-

i mented Transition Network, ATN (See [WOODS73 and 70]). A simple transition net-
work is depicted in Figure 4.33. The top of the figure shows the grammar defi-
nition for a simplified version of a noun phrase (NP) as a finite-state machine.

The initial and final states are labeled, respectively, S and E. State tran-
sitions are allowed when the next word in the input is of the part of speech
shown on the labeled arrows. (A jump means that a transition is made with-

out using an input word.) A sequence of words that causes transition from the
initial to the final state is accepted. A parse of the input is generated in a
straightforward manner. For example, the input

"the big brown cow"
would cause the output parsing

(NP [DET the] [ADJ big] [ADJ brown] [NOUN cow]]

1

System Development Corporation

30 June 1977 4-124 TM-5903/000/00
Adj J
Det PP 1
Noun N 1
it oun Phrase (NP)]
4

Prep NP
&— —(O— —»(E) Prepositional Phrase (PP)

Det A Determiner
Adj An Adjective
Prep A Preposition

Figure 4.33 Transition Network Example

State transitions can be made for reasons other than word class. The transition
network for an NP allows an optional determine (DET) followed by zero or more
adjectives (ADJ), followed by a NOUN, followed by zero or more prepositional
phrases (PP). A PP is itself defined as the network shown by the bottom figure.
Thus, a state transition can be caused by finding a phrase, accepted by another
named network, as well as satisfaction of a word class. Using the full defini-
tion, the input

“"the brown cow in the red barn"

System Development Corporation
30 June 1977 4-125 TM-5903/000/00

can be parsed as

[NP [DET the] [ADJ brown] [NOUN cow]
[PP [PREP in]

[NP [DET the] [ADJ red] [NOUN barn]]]]

As described so far, transition networks cannot handle many of the frequent
complexities that occur in natural language. To behave in a satisfactory
manner, the network must operate in a nondeterministic manner, so that ambigui-
ties can be resolved. Also, the transition network is normally augmented (then
it is called an ATN) with a set of registers associated with each usage of

one of the graphs (like the two shown in the figure). As states are entered,
the values of the registers can be set, and tests of these register values can
be added to the state-transition conditions. This makes it possible to enforce
such constraints as number agreement; e.g., accept "he goes" but not "he go".
Also, the register test and sets can use information from a definitional knowl-
edge source (usually a semantic network) help to disambiguate phrases such as
"typed blood".

Recently, a class of methods for understanding natural language has been
developed that use no explicit syntax, but instead rely on a semantic abstrac-
tion of the problem domain. For example, see [BURGER77 and 75]. A system is
described that uses an abstract of a data base description including the inter-
relationships of important words (e.g., item-names). This abstraction, along
with knowledge of English key words (e.g., of) forms a parser. This kind of
technology has the advantage of being efficient and easy to use in a variety of
domains. It works well as long as the domain is reasonably bounded (like a
front end to a KBS or data management system) but would not appear to be exten-
sihle to more unrestricted areas.

System Development Corporation
30 June 1977 4-126 TM-5903/000/00

Another technique for very efficiently handling natural language input in a
restricted domain is described in [BROWN75]. The approach is to represent

the grammar as a set of countext-free rewrite rules. However, the terminals

in the grammar are concept classes rather than word classes. (Such a grammar
is called a pragmatic grammar.) For example, a concept such as "something that
can have a voltage measurement" is used instead of NOUN. The parser has been
implemented as a set of procedures coded by hand from the grammar. (One possi-
bility is to use standard meta-compiler methods to make an automatic parser
generator.) A clear advantage to this methodology has been the ability to
implement a sufficient natural language input capability without getting lost
in the general details of language.

4.4,1.2 Output to the User

The other half of the user interface is responsible for output generation. This
is needed to query and prompt the user, report results, give explanations, and
answer questions about the system. Except for providing explanations, these
tasks are easy relative to handling natural language input. In the first place,
many output messages are merely formatted data items and tables and thus

involve no particularly novel techniques. Further, many output messages can be
concocted by simple fill-the-hole techniques with canned templates. (See ihe
ELIZA example in the previous section.)

Providing explanation to the user of the system's behavior is difficult whether
or not the output is in natural language (though it usually is). The reason
for the difficulty is that the explanation must be in terms of the knowledge

runks, problem parameters, and inference rules used to derive the results.

the explanation mechanism must be able to find these things. Next, the
na! representations must be translated to a format suited for human con-
Tri5 is made harder by the fact that not all of the things are of
turce, and a good explanation mechanism ought to identify and out-

that were most relevant or crucial for solving the problem at

System Development Corporation
30 June 1977 4-127 TM-5903/000/00

hand (uniess asked for additional detail, in which case the system should
respond appropriately). An aid to providing good explanations to the user is
appropriateness of chunk ,size. That is, the ability to provide acceptable
explanaticns is based upon _communication being at the right "clip" level. If
the knowledge chunks used are too small, the explanation is laborious and not
convincing. On the other hand, if the chunks are too large, they may not appear
to apply directly to the solution beiig described.

The most direct method of capturing eleﬁénts’that are useful for explanations

is to use the workspace representation to store a history of the problem-solving
activity. The mechanism can then start from the element(s) of the workspace
representing the problem solution and pick out the sequence of events that moved
the system from problem definition to solution. Ideally, each element would
include as part of its history the rule of inference and wﬁat the rule was
applied nn (other workspace elements, knowledge chunks, confidence factors,
etc.) to produce this element. Such an approach has the advantage of making

all useful information available to the explanation mechanism, including infor-
mation about why other solutions were rejected. Further, the history collec-
tion can be done uniformly by the CE. The disadvantage is the cost of storing®
information that may never be used.

Another approach is to let the KS determine what may be most relevant for

an explenation. With this method, a knowledge chunk can optionally have an
explanation scheme. If it is used to produce a result that is in question, the
scheme is instantiated in its local environment to produce an explanation. The
advantages of this are: (1) high-quality explanations can be produced becaise
it is possible to take idiosyncratic situations into account, and (2) the
explanation mechanism can be used for other purposes, e.g., as part of the
complaint depart for a frame. The major disadvantage is that the expert who
imparts knowledge to the system must consider the method and necessity of
explaining each knowledge chunk--an arduous task.

. | —

System Development Corporation
30 June 1977 4-128 TM-5903/000/00

A third method of providing explanations is to initially solve the problem
without keeping a history in the workspace. Then, if the user asks for an
explanation, re-soive the problem in careful mode. That is, the mechanism
looks over the CE's shoulder duriny the re-solving activity and picks out the
events that are of 1ikely interest. In a sense, the explanation mechanism
enables a set of demons that are triggered when special situations occur. At
these points, the explanation mechanism can interrupt normal processing to per-
form the necessary data collection. The disadvantage of this is the ineffi-
ciency introduced into the CE so that demon-like execution can occur. The
advantage is a possible gain in efficiency if explanations are only seldom
needed. Not enough is yet known to evaluate the tradeoffs.

The final problem confronting the explanation mechanism in the user interface
is translating explanations into a natural form for the user. Fortunately,

the complexity of this task is substantially reduced by uniformities of
format in the KB and in the workspace. For example, in a production system,
it is straightforward to turn an IF-THEN rule out in reasonable English (see
Section 3, for an example). The usual approach is to have a separate scheme
for each kind of knowledge chunk in the KB and element in the workspace; most
such schemes Took like sophisticated fill-in-the-blank formulae.

The main problem in providing explanations is identifying the information to
be included--the output formatting is only a secondary issue. When designing
a KBS, one must decide early whether an explanation mechanism is to be incor-
porated. If so, techniques need to be built into the CE for information cap-
ture and for assuring that step-by-step behavior is explainable. Were this
not part of the original design and specification, it is unlikely to be easily
added later, because important parts of the system's behavior would probably
be obscured by optimization and condensation. Good explanation mechanisms can
oaly exist in a system whose internal step size is an explainable unit to the

USEr.

System Development Corporation
30 June 1977 4-129 TM-5903/000/00

Some articles about explanation mechanisms and natural language generation
that are of interest are: [DAVIS76], [SHORTLIFFE76], [SWARTOUT77], and

[WINOGRAD73].

grem—

R e

System Development Corporation
30 June 1977 4-130 TM-5903/000/00

4.4.2 The Expert Interface and Knowledge Acquisition

The expert interface is the mechanism through which knowledge is added to the
KB or the KB is modified. Its intended users are experts in the problem domain
s1d the system implementors who are responsible for building the initial KB.
‘nis interface is often called the knowledge acquisition interface. Unlike

ine user interface, it can be assumed that the user of the expert interface

nss some knowledge and awareness of the structure and functioning of the KBS.
“ri. does not imply that he is a programmer; rather it means that he kﬁows that
such tnings as knowledge are represented by IF-THEN production rules, or that
confidence factors are integers in the range -100 to +100.

The remainder of this section describes the knowledge-acquisition process and
the expert interface. The material is summarized in Figure 4.34.

The knowledge that goes into a KBS must originate trom some external source.
Tne most usual is an expert in the problem domain. He can provide specific
“acts, rules of thumb, and the rules of reasoning he employe, along with his
rating of confidence. By our definition of a KBS, such an expert must be at
least one of the originating sources. Members of the implementation staff for
many KB systems are experts in the problem domain in which the systems operate
and therefore provide much of the initial contents of the KB. In some systems
e.g., MYCIN [SHORTLIFFE76]), the user can also enter knowledge, as an expert,
co tailor the system to his own particular needs.

Other originating sources of knowledge commonly used are journal articles,
texts, and engineering handbocoks. The information from these sources often

is hard data and tabular. Therefore, it usually comprises fact files in the
KB. In a domain where the kinds of knowledge found in these sources is
sufficient for problem solving, a KBS is unlikely to be useful because a
closed-form method is known and more appropriatély implemented by conventional
methods .

30 June 1977

4-131

ORIGINATING SOURCE

Domain Expert (or User)
Journals

Texts

Protocol Studies
Derived Results

ENTERED BY

Domain Expert
Implementor
User

CE

COMPILED BY
Knowledge Acquisition Interface
Implementor
ISSUES
Interface Language
Consistency
Accommodation
Confidence Factors
MAJOR OUTSTANDING PROBLEMS
Knowledge Acquisition

Learning
Extensibility

Figure 4.34. Knowledge Acquisition

System Development Corporation

TM-5903/000/00

System Development Corporation
30 June 1977 4-132 TM-5903/000/00

A technique used to collect expert knowledge is the protocol study. An expert
is given problems to solve, and an experimenter either observes and records
the expert's behavior or asks for explanations of various steps. The experi-
menter then analyzes the collected information and tries to determine general
satterns, knowledge used, and principles of reasoning. Some interesting work
nas been done in this area. See for example, [COLLINS76], [DEUTSCH74],
[DILLER73], and [MALHOTRA76,75a and 75b].

Lnotner originating source for knowledge is from results derived by automatic
means. One method is to remember problems that have already been solved by the
KBS and to use them to answer further questions. Though this is done by some
Al systems [SUSSMAN75] and [LENAT76], it is not done by any systems that

fit our definition of a KBS. Such a technique is called computer learning. A
problem with blind learning (saving all generated results) is that the system
eitner runs quickly out of space, or runs into a combinatorial explosion of
possibilities as the KB grows. What is needed is to save only those things that
are interesting or important--this is an open research problem. Another
aooroach to automated knowledge generation is exemplified by META-DENDRAL
[RUCHANAN76]. The program is presented with a large set of solved problems.
From this corpus, it infers production rules and confidence factors for them.
The derived rule set is used by DENDRAL for solving new problems.

{aeally, the knowledge acquisition interface can be used by domain experts and
users of the system other than the implementation staff. However, in many

KB systems, the complexities of adding to or modifying the KB are such that
programming skills ire required. For such systems, a computer specialist may
need to act as an intermediary between the originating source and the KBS.
This is especially true or systems that contain Targe amounts of procedural
knowledge. Domain-specific knowledge becomes intimately intertwined with
control logic and programming knowledge that is part of the implementor's
intuition instead of the expert's. This can lead to two problems: (1) diffi-
culty in providing explanations of system behavior and solutions in domain-
specific terms, and (2) loss of modularity and extensibility.

System Development Corporation
30 June 1977 4-133 TM-5903/000/00

When a KBS does not make adequate provision for a domain expert to use the
knowledge-acquisition mechanism, one should immediately find out why. If the
reason is only to avoid the bother of making another human-engineered interface,
then the only problems that will result are those of needing a go-between to
modify or extend the system. On the other hand, if the reason is that the con-
ception of knowledge chunks, and representations thereof, by domain experts and
the KBS are radically different, then a major trouble area has likely been
spotted. Namely, it is very possible that the system will not be extensible

in ways that were not clearly understood initially by the implementors. (What
you see is all you can expect.) On the other hand, if the KBS and experts
agree on the knowledge model (representation) used, extensibility is clearly
possible within that framework in ways that are known and obvious to the expert
out not necessarily to the implementer.

The knowledge-acquisition interface has three major tasks: (1) accepting
knowledge in external format and translating it into internal format, (2) vali-
dating consistency of new and old knowledge, and (3) storing the knowledge into
the KB. This three-step process is called compilation. Often the translation
component is built using a part of the input mechanism from the user interface
and can handle restricted natural language.

ine real difficulty begins with validation of consistency and checking for
redundancy--a nontrivial task--particularly when confidence factors are

included. If knowledge is represented as well-formed predicate calculus
formuias, the methods for checking are straightforward. To check for redundancy,
simply try to prove the new knowledge from the existing KB. To check for incon-
sistency, add the new to the old and try to prove something that is patently
false, say Aa~A; if there is an inconsistency, the proof will succeed. For
other kinds of knowledge representations, the checking is not so easy. Whei.er
or not the new knowledge is inconsistent or redundant (believe it or not, it can
be both when added to a KB that presently has neither problem) depends upon how

TT— _,”"l,_“ S At e "”,,..JMJV

System Development Corporation
30 June 1977 4-134 TM-5903/000/00

it is going to be used as well as what the knowledge is. For a more detailed
account of the problems of maintaining consistency (see [McDERMOTT74].)

Tne third task performed by the knowiedge acquisition interface is storing the
new knowledge into the KB, a process called accommodation. See [JMOORE74]. A
problem can occur if the system has several knowledge sources and fact files in
the KB--where should it be stored? Even if the question of where is solved,

the problem of how should not be underestimated. Storing can be a violent
activity--it is not often that the representation of new knowiedge is just
sonied into permanent memory and left for later use. Rather, the internal
{physical) representation is usually a structure with links between chunks,

ana the acquisition mechanism must insert the new chunk into this plexus. For
exahp1e, in MYCIN, each production rule that concludes something about feature
F is linked to every rule that tests F in its antecedent. In most instances,
the linkages computed by the knowledge-acquisition mechanism will determine

how and when the knowledge is used during normal operation of the KBS. Thus,
the insertion (as well as deletion and modification) of knowledge chunks can be
a complex operation that depends upon many things such as confidence factors,
conflict-resolution strategies, existing KB content, etc. i

Surnrisingly, today's principal outstanding problem with knowledge acquisition
is not computer related. It is that most disciplines (other than mathematics
and computer science) do not understand their own fundamentals in a formal
wav. Therefore, 1n order to build a KBS for that discipline, it is necessary
to find a pool of expertise whose members are willing to rethink their methods
and procedures. Or:> catalytic method for starting this process is the
protocol study menticned above. The other outstanding problems are more
technical in nature, the principal ones being (1) methods for systems learning
to perform better by having solved similar problems, and (2) techniques to

allow systems to be gracefully extended. The Tatter point is particularly
important, even in the short term. If a system can easily be extended, then

System Development Corporation
30 June 1977 TM-5903/000/00

it can start performing useful tasks before all the knowledge necessary to it
has been collected. This set of features (or lack thereof)--formalization,
learning, and extensibility--together create a problem called the knowledge-
acquisition bottleneck. The solution of this problem is key to bringing

KBS technology to widespread dissemination.

System Development Corporation
30 June 1977 5-1 TM-5903/000/00

5. APPLICATION CONSIDERATIONS

Though KBS technology represents a maturing technology, it has not advanced to
the state where it is a paucity of writing related to application selection
And, though there is a fair body of literature on a variety of topics related
to KBS technology, there is paucity of writing related to application selection
and the design decision process. With minor exceptions (e.g., [BUCHANAN75]),
there is no documentation of failures, thus denying the community one of the
most potent educational opportunities--learning from the mistakes of others.
Therefore, what follows will not, nor can it be, more than a set of general
guidelines. Put another way, we do not believe that it is possible, given the
present state of knowledge, to design and build a KBS that would support KBS
developers in selecting and designing applications over the spectrum of poten-
tial applications.

The following is an amalgamation of material contained in [BUCHANAN75], discus-
sions with KBS implementers, and our own observations resulting from experience
with similar and related software developments.

Though there exists a relatively diverse collection of existing and developing
KBS applicaticns, the selection process for each new application requires con-
sideration of a variety of issues. We have divided these into three major
groups. First, there is a set of initial considerations that address the issues
of the problem domain itself and the people associated with it, the experts and
the practitioners. Next, are the technology considerations that focus on the
availability of usable technology for implementing a KBS that has successfully
met the first criterion. Last, there are the equally important considerations
that are directed at determining whether or not the development environment and
the user environment are properly supportive. Each of these groups is elabo-
rated belew in the form of a set of questions and the underlying rationale or
concern that each addresses.

i
|
E
|
i

> dune 1977 5-2 System Development Corporation
TM-5903/000/00

5.1 INITIAL CONSIDERATIONS

Does the problem have a closed-form solution? If a closed-form solution exists

and can be implemented using conventional computer technology, then there is
no reason to consider the problem as suitable for KBS technology. On the

other hand, the closed-form solution may be so inefficient computationally,
because of the number of steps involved or because of uncontrollable combina-
torial explosions, that an algorithmic implementation is unthinkable. In this
case, and when no known closed-form solution exists, the problem remains a
candidate.

Is there an expert who knows how to solve problems in the domain? If there is

no expert or group of experts to whom the typical practitioner would turn for
advice or no one who is recognized as an outstanding performer for the type of
problems involved, the likelihood of constructing a successful KBS is quite
small and not worth considering. The existence of such an expert or experts is
mandatory.

Is an expert available and can he be motivated to work on the development of
a_KBS? The existence of an expert is necessary but not sufficient. He must be
an integral participating member of the development team. Without the full
cooperation of such an expert, the effort is not likely to succeed. On the
other hand, he must not be expected to become an expert in computer science

and KBS technology. The computer scientists and technologists must be equally
cooperative in meeting the expert at least half way. Each must be willing to
learn the essentials of the others' discipline so that effective communication
can be established. The lack of such cooperation may be difficult to determine
before the actual implementation begins, but every effort should be made to
assure it early.

There are several ways to impart the domain-specific knowledge to the KBS. One
way is for the system implementer and the expert to work as a team, with the

expert providing the knowledge and the implementer encoding and inserting it in
the system; this can be a very lengthy and time consuming process, but is prob-

System Development Corporation
30 June 1977 5-3 TM-5903/000/00

ably the best and possibly the only way to get a new application off the

ground. Another way is for the implementer to provide an interactive subsystem
(via the knowledge-acquisition interface) that allows the expert to impart
knowledge to the system without intervention by anyone else; this would be diffi-
cult to do without having partially used the first alternative to determine the
specific design specifications for the interface.

Thirdly, a separate system could be built to abstract the knowledge from observa-
tions and experimental results. This would be a theory-formation program that
could infer the rules about the domain from the data, as Meta-DENDRAL does. It
is doubtfui that such a system could be created without considerable experience,
for it requires modeling the theory-formation abilities of the experts. Such
knowledge can be considered to reside on a higher conceptual plane than the
problem-solving knowledge required for a KBS. One of the more difficult aspects
of constructing such a system, even if it were deemcd feasible, would be pro-
viding the necessary constraints that would limit it to generating only knowl-
edge that is plausible within the theory, rather than all possible knowledge
derivable from the data. The generated knowledge must not only be coherent
within the theory, it must be consistent within itself.

Does the expert know--or have a model in his mind of--how he solves problems?

Given that all of the above conditions can be met, one now faces the problem
of determining whether or not the expert's problem-solving knowledge can be
transferred to the proposed KBS. If the expert cannot bring forth the steps,
processes, rationale, heuristics, etc., that he uses in a reasonably orderly
manner, the chances of producing a KBS that emulates his ability are nil.

Is the domain well bounded? In other words, is the task domain Timited in
scope and independent of other knowledge about the world? Though an opera-
tional KBS may require large amounts of domain-specific knowledge, the existing
techniques are insufficient to cope with domains that require significant

| —— , , |

System Development Corporation
30 June 1977 5-4 TM-5903/000/00

amounts of general or world knowiedge. Thus, in our hypothetical exampie in
Section 2, the amount and kinds of knowledge reguired to adequately diagnose
the cause of failures in an automobile given a set of observed conditions or
symptoms may be quite large. The system need not have knowledge about automo-
bile manufacturing, driving habits, or the sales philosophy of the agency to
perform its function.

Are the intended users professionals? First, it is not likely that people in

non-professional occupations confront problems of the kind for which KRS tech-
nology is appropriate. Therefore, in the appropriate areas for which there is
an expert and for which the u.her considerations hold, the professional practi-
tioners must have a thorough grounding in the field, understand what theory
does exist, be able to converse with the expert in the jargon of the field, and
confront significant problems within the domain in their daily activities. To
attempt to provide a KBS that would permit a casual user or non-professional to
perform at the level of the professional practitioners is not feasible today.

¢ 'he intended users agree on an underlying "theory" and its application? It

not sufficient that there exist a coherent theory; it must be widely
s epted and agreed upon by the intended users and the chosen experts. It is of

== e consequence that there are competing and even conflicting theories, so
< the competition and conflict are external to the intended users and
At concerned with a specific implementation. It is highly unlikely that
one could successfully design and implement a KBS that could incorporate a
diversity of theoret-cal views. A slightly simpler form of this issue is
whether or not the intended users agree on who is and is not an expert, and
whether there is general agreement on what is a correct result or answer.

Is a plausible or reasonable solution acceptable to the intended users? Since

the power of a KBS stems from its ability to reason plausibly using incomplete
ur inexact information, there is no guarantee that it wiil always produce the

AD-AO44 883 SYSTEM DEVELOPMENT CORP SANTA MONICA CALIF F/6 9/2 R
KNOWLEDGE=BASED SYSTEMS: A TUTORIAL: (U) . o
JUN 77 J A BARNETT» M I BERNSTEIN MDA904=76=C~0343

UNCLASSIFIED SDC=TM=(L)=5903/000/00 NL
- IIIIIIIIIIIIIIIIIIIlIIIIIlIIIIlI|IIII|||IIII|||III|I\IIIIII|IIIII|IIII||IIIII
Y
IIIIIIlIIIIIlIIIII|IIIII|IIIII|IIIII|IIIII|IIIII|IIIII|IIIII|IIII||IIIII|IIII||IIIII !

= -

p—p

: System Development Corporation
30 June 1977 5-5 TM-5903/000/00

"correct" result; but, under the conditions, it can be expected to produce the
most reasonable or plausible result. If the intended users are unwilling to
accept such results, even when the system is able to produce credible explana-
tidns, the system will not be successful. One possible way (though at some
risk of wasted effort) of convincing such recalcitrant users is to bring up a
limited version of the system that performs very well on what is generally
agreed to be a very difficult problem set.

Will the system be required to provide unanticipated support over its lifetime?
Is the domain a dynamic one such that the problems that the users must solve,
though within the domain, are constantly shifting in unpredictable ways? It is
expected that there will be orderly growth in the knowledge base of a KBS, but
drastic shifts in emphasis may be quite difficult to accommodate. A KBS is not
a general problem-solver. Even within a well-bounded domain, it may be neces-
sary to restrict the KBS to a subset of the problems. Though it may be possible
to provide the necessary flexibility, there will be added risk in doing so.

Do problem-solving protocols exist or can they be formulated? The transfer of
knowledge from the expert to the KBS can be accomplished in various ways. One
way of obtaining a workina model of the expert's problem-solving method is by
taking protocols while he is actually solving a problem or collection of

problems. Though this is not an exact science, it has been found workable in a
good many cases. This is one aspect of KBS technology that is the least
developed, though KBS implementers and computer scientists in other, related,
areas are attempting to bring more formality and structure to the process.

Do the protocols show a reasonable consistency of reasoning--do principles

surface? Does the expert approach each problem in an ad hoc manner, or does he
apply a set of heuristics and reduction processes that rapidly focus his atten-
tion on the key subproblems? Unless one can extract the essence of an orderly
~easoning process from the expert, the likelihood of producing a viable KBS is
Guite small or non-existent. Even if all of the other considerations are met,
tnis remairs one of the most critical.

System Development Corporation
30 June 1977 5-6 TM-5903/000/00

Are the economics right? Would the users be willing to pav a human consultant

what the computer solution cost is likely to be? This embraces a number of
issues. The problems that are solved must be useful in that people expend a
fair amount of effort trying to solve them, and the solutions are worth the
effort. It should be expected that the use of the KBS will raise the level of
the average practitioner significantly, either by making him more productive
(less time or effort spent on each problem) or by improving the quality of his
cutput. Another aspect of the economics is related to data gathering and
recommended actions. A KBS that incorporates the proper knowledge can reduce
the cost of the information-gathering process by possibly providing adequate
solutions with less (or lower-quality) input, but there are Timits beyond which
no system or person can properly perform. A KBS can also recommend the lowest-
cost, lowest-risk action to be taken, but in all cases, such recommendations
should be tempered with human judgment. The role of the human practitioner is
not to be subsumed by the KBS. The KBS is a tool for his use, and the final
disposition of its results is his responsibility.

System Development Corporation
30 June 1977 5-7 TM-5903/000/00

5.2 TECHNOLOGY CONSIDERATIONS

In what follows we address issues that relate to the design and implementation
from a technological viewpoint. Some of the issues are directly related to
those above, but have a different intent in that it is assumed that, if one

has reached the point in the decision process for a KBS application where

all of the initial considerations have been satisfied, then the concerns

must turn to those of determining whether the available tecknology will support
a design and implementation without undue risk.

Can a first-order model be constructed from protocols and/or with the help of
expert(s)? The design of the KBS must be predicated on the model, extracted
from the expert, of his knowledge and of his reasoning process. Unless it is

covious that there are no unforeseeable problems, it is wise to construct a
first-orasr model that is either a hand simulation or (preferably) a rapidly
constructed program to determine whether the proposed method will work. If not,
it may indicate a re-examination of the design or a v. raisal of the selec-
tion. Though the model may perform well, it does arantee that the final
KBS will do as well across the spectrum of problems it was designed for, but
will indicate that the approach is reasonable.

there a knowledge representation that matches the "chunk size" of the expert's

<rcwledge? The design of the data structures and procedures should reflect as
accurately as possible the expert's conceptualization of the problem domain in
>rder to minimize or eliminate translation requirements and problems in dis-
covering and removing errors and improving the system. This is not to imply that
“ne KBS must necessarily accurately model the expert's reasoning process from

a psychological viewpoint, but the expert will be a party to these processes.

A mismatch will make the knowledge transfer more difficult and error prone.
Having to invent a new knowledge representation technique increases the risk

of failure.

System Development Corporation
30 June 1977 5-8 TM-5903/000/00

What are the necessary knowledge source(s) and their representation(s)? The

most successful KBSs to date are also the simplest ones. These represent
the most stable existing technology. Therefore, one must not only choose an
application area that has the general potential for success based upon domain
and expert knowledge criteria, but one for which the existing technology is
applicable at minimum risk. Inventing new representational techniques because
the new application poses unique requirements increases the risk of failure
unless the new technique is an obvious extension of one that is well known.
The need for a flexible and extensible system must not introduce inconsistencies
‘n the knowledge and conflicts in the problem-solving process, therefore, there
2re a variety of techniques for dealing with less than perfect knowledge or
wth information that is known to contain potential errors. Measures of
Jlausibility and credibility, and of the associated Certainty Functions, must
pe ~~0sen with the utmost care, for they carry a great deal of inherent

.1ice about the domain.

Wha:t reasoning or inference methods are needed? There are several problem-

soiving methods (each associated with the appropriate knowledge representation)
tnat are candidates for implementing CEs. Among the better known are heuristic
search (which implies that there exists a constrainable search-space node gen-
erator), deductive inference from rules, pattern matching, means-ends analysis,
and modeling and simulation (see Section 4). In highly complex systems with
multipie levels of a straction and multiple representations of knrowledge,
different methods may be required to cope with the problem at each level. In
t715 case, one can view the CE as primarily an agenda mechanism and the local-
“evel problem solvers as knowledge sources. In general the initial design for
zne CE should be the simplest one possible; the necessary improvements will
secome obvious as the system grows. :

" e Lol s ot cn e fea L

E
:

System Development Corporation
30 June 1977 5-9 TM-5903/000/00

Are the knowledge representation, chunk size, and reasoning method compatible

with one another? There are critical design issues related to the technique

selected for representing the knowledge in the KSs and the interaction with the
CE (see Section 4). It must be clearly understood that the representation
technique or techniques selected for knowledge in the KB can strongly prejudice
the methodology and thus the problem-solving ability of the CE. For instance,
if one chooses to represent the KB's knowledge as production rules, the CE is
limited to relatively simple inference-making processes. Overdesign of the

CE should be avoided; it has no payoff. Where multiple heterogeneous repre-
sentations of knowledge are required or chosen, the CE will be relatively
complex and most likely require an evaluation and an agenda mechanism. One of
the much-discussed issues in KBS technology today is that of the "chunk" size
of the knowledge in the system (see Section 4). It is a function, first, of
how the expert conceptualizes the theory of the domain and the problem set, and
second, of the selected representation technique.

In one way or another, every CE must be imbued with the ability to plan how best
to attack the problem (or subproblem) at hand within the constraints of the
applicable method that is compatible with the knowledge representation. Order-
ing the sequence of events, evaluating the results, and determining what needs
to be done next may require only a nominal process or, in complex systems, a
sophisticated agenda mechanism.

Will meta-knowledge be required? If the design of the system for the chosen

domain is such that the knowledge about reasoning and control must be modular,

and such knowledge must be obtained from the expert, the KBS will be quite

-omplex, and thus the risk of failure will be increased. If, on the other hand,
"2 reasoring process and control can be incorporated in the CE, then the sys-

w22 relatively simple and easier to implement.

m

v

System Development Corporation
30 June 1977 5-10 TM-5903/000/00

Need procedural knowledge be incorporated? Care must be taken not to embed
knowledge in code (procedures) that is better left as KSs in the long run,

even at the sacrifice of short-run efficiency. Errors of this sort in the
design will either reduce the general flexibility of the system or force
major modifications as the system grows. As a partial guide, all knowledge
should initially be designed to be in the KB except for the absolute minimum
that must be incorporated in the control structure of the CE.

Wili the user be required to add knowledge to the system to solve his problem?

If the problems to be solved require that the user add knowledge (albeit
temporary) as contrasted to data, the knowledge-acquisition interface and asso-
ciated facilities for validating the consistency of added knowledge will be
more complex (as will the control mechanism in the CE) and difficult to design
and implement, for they will have to serve a large population of users rather
than a small set of experts. Thus, the human engineering and language inter-
face will be more difficult to do.

Will the system support growth? A KBS must be viewed as a dynamic system

in the sense that it should be designed to "grow" in various ways from its
initial conception and implementation. The primary areas for improvement
should be: (1) increasing its inferential capabilities both as the theory of
the domain evolves and as the user's understarding increases; (2) increasing
the Knowledge Base both independently of (1) as well as in conjunction with it,
e.g., adding new KSs that broaden the problem set that can be accommodated;
(3) improving the f1->xibility and human engineering aspects based on user
experience and needs and the implementers' understanding of the users; (4)
increasing the overall reliability of the system by refining the inferential
capability and the knowledge stemming from an understanding of the failures
or errors observed in use. This means that the design and implementation of
the problem-solving procedures must be flexible enough to permit frequent
modification, particularly in the early stages. It is most unwise to embed

System Development Corpnration
30 June 1977 5-11 TM-5903/000/00

the problem-solving knowledge deep in the code. Thus, an appropriate selection

of KSs for the KB and a proper representation are critical to success and growth.

One must forego the short-term benefits of an ad hoc initial implementation

in order to avoid the downstream costs of redesign and major modification.
This may extract an early price in performance and immediately demonstrable
results, but we believe the penalty to be worthwhile. The system design must
also be flexible enough to accommodate expected changes in knowledge about
specific problems as well as the problem-solving strategy that is likely to
evolve over time with accumulated experience. One implication of all of this
is that the implementer's job is not finished after the first success at solv-
ing a user's problem. Most KBSs to date have continued to evolve and improve
through several generations before entering a stable maintenance mode. In fact,
it is not clear that any present-day KBS has reached this state.

System Development Corporation
30 June 1977 5-12 TM-5903/000/00

5.3 ENVIRONMENTAL CONSIDERATIONS

The environmental considerations are often cverlooked or given minimal
attention. We believe that they should be as strongly considered as any of
the above, because they contribute in their own way to the overall success or
failure of a KBS development effort. Though all of the initial and technologi-
cal considerations bode well for success, the operational and developmental
environments, if not of the proper kind, will hinder both developers and users.

Is there an interactive system for the KBS users? Recall that as we have

defined a KBS above, it must be useful to workers in the domain of application.
To be most useful, a KBS should be interactive. It is conceivable that a KBS
could be developed to run in a batch-processing environment, but the circum-
stances that would dictate such a decision are inconceivable. To quote
Buchanan, "A batch system just cannot provide helpful, rapid feedback and
immediate error recovery, e.g., from a simple typing error.” [BUCHANAN75].
Since KBS, as presently defined, are intended as expert agents to support
people, other potential applications, such as process control systems, or
"intelligent" robots for remote exploration are not considered here. Thus,
we believe that the basic design philosophy for a KBS should be that of a
user oriented interactive system.

Is there an interactive development system? We believe that it makes sense

to require that the development environment for the KBS be an interactive one,
independent of whether the development environment and the user's computer
environment are one :nd the same. An interactive development environment

will speed the implementation process. One of the reasons appears to be unique
to KBS. It is that the interaction with the domain expert in acquiring and
validating the knowledge provided the KBS can be done much more efficiently.

It is also generally true that, given the proper set of development support
tools, interactive development is more effective and efficient than development
in a batch environment, particularly when confronted with developing an

interactive application.

System Development Corporation
30 June 1977 5-13 TM-5903/000/00

Do the necessary tools exist, in particular a properly expressive programming
system? The development system must support the required software tools

peculiar to KBS development. In addition to the standard tools, e.g., an
editor, file management, etc., an adequate programming system is necessary,

one that provides the necessary expressive power in the language and commensu-
rate debugging support. For example, the programming system should be interac-
tive and support terminal I1/0, permit incremental compilation or be interpre-
tive, provide an evaluate function similar to the EVAL of LISP. For debugging
it should support symbolic interaction, break in and tracing; for data struc-
tures it should provide lists or pointers (list structures), aggregates, such
as tuples and nodes in addition to arrays, symbolic data and identifiers with

associati or properties as provided in LISP; for control structures suffi-
cient ity to easily process through complex structures such as recur-
ring tree, and a backup mechanism. There is a tradeoff that must be
con’ at the outset concerning efficiency. A programming system similar

to the one just described will permit efficient and flexible development, but
not necessarily piovide an efficient end product. A programming system that

will provide an efficient end product is likely to lack many of the features

that we believe are highly desirable to permit flexible and efficient devel-

opment, thus increasing the time and cost of the implementation.

Will the resultant system perform efficiently? There are two aspects to

efficiency. There is efficiency in terms of the software's use of the hard-
ware., This is a function of the programming system used, the operating
environment of the computer system, and the ability of the programmers imple-
menting the system. Certain inefficiencies can be tolerated, but the system
must provide respectable response time for its users; otherwise, it will not
be used. There is no automatic way to assure efficiency unless it is designed
in from the beginning. The aspect of whether or not the system will be an
efficient problem-solver has been indirectly addressed above.

System Development Corporation
30 June 1977 5-14 TM-5903/000/00

5.4 SUMMARY

We cannot stress too strongly that the KBS must be properly organized beginning
~12h tne design. Not only must it be organized and structured so that the

C:Z and the KB are separately identifiable entities, every element must be struc-
tured so that it is easily maintained and impiroved at minimum cost. Multiple
KSs should be considered when designing the KB for reasons of performance and
zase of adding new knowledge. The user interface must satisfy the user's per-
ception of his needs and be based on good human engineering principles (includ-
ing the choice of the proper terminal in some cases) so that it is attractive
rather than repulsive. The interface must accommodate the user's views of

how the interactions should proceed, e.g., the initial setting of default
parameters, even though that may not be best or easiest from the implementer's
view. Errors should be overlooked when possible, but at a minimum the response
should be supportive and indicative of what is to be done to correct the error.
Explanations of the system's behavior must be in the most acceptable and useful
form for the user providing sufficient flexibility to accommodate the user's
change in perception with experience. Though not intended as a primary source
of debugging information, the explanations are useful both to the implementers
and the experts and should be designed to incorporate their needs. Too often,
conventional software implementations have gone astray because the developers
lost sight of the fact that the system is to be developed for the use of ard to
the benefit of its users who are not likely to be computer sophisticates. The
danger is lessened in developing a KBS because of the need for domain experts,
but the principle should not be overlooked.

In conclusion, the decision to use KBS technology to solve a user's problem is
not a simple one, nor is it vithout a certain amount of risk. For though
much of the technology underlying KBS is well founded and understood, there
remains a great deal of craft involved in completing a system, and the skill,
knowledge, and even prejudice of the craftsman have an impact on the final

outcome.

System Development Corporation
30 June 1977 6-1 TM-5903/000/00C

6. CONCLUSIONS AND RECOMMENDATIONS

The technology of knowledge-based systems has emerged from the Taboratory, but
it has not achieved the status of being commonly known or commonly understood
as a way of implementing computer-based application systems. Systems have

been developed in an intriguing spectrum of application areas, from medicine
and chemistry to geology and businesses, and some general techniques have been
developed that are independent of specific applications--for example, systems
that model common-sense reasoning, deductive inference, and image understanding.
The general level of accomplishment appears to be high enough to make it worth-
while to begin exploring other areas for immediate pctential application.

There remain a number of unresolved issues that increase the difficulty and
potential risk of using KBS technology in new applications. Though it is
reasonably clear where KBS technology can and cannot be used, to the extent that
the high-risk applications can be identified--and, if necessary, eliminated--
there is no way of guaranteeing that a selected application is entirely without
risk. How to select techniques for representing knowledge in a system and for
constructing the control mechanisms are open issues that impact not only
specific design choices, but the performance of the system as a whole. Even
with a group of domain experts who are cooperative and well motivated, the
methodology for transferring their knowledge to the system is, at best, ad hoc;
and that transfer process is probably the most crucial process of all. This

is tne area in which more research is needed to discover (or invent) what
amounts to a completely new technology: the acquisition, communication, and
~epresentation of expertise, by which we mean the ability to use a body of
knowledge effectively in solving a particular problem.

~#e would not be forthright if we attempted to play down the risks that must
oe faced in deciding to apply «BS technology to any application that involves
supplying assistance to persons involved in sensitive problem-solving activi-
ties. On the otner hand, the risks can be minimized if our criteria for

selecting potential applications are carefully observed. The development of a

System Development Corporation
30 June 1977 6-2 TM-5903/000/00

KBS application is Tlike any other software-development activity: it carries
risks. Therefore, although we do not explicitly say so in Section 5, it is
necessary that the best possible practices pertaining to software-development
efforts in general be followed in developing a KBS application. Of particular
importance is getting the users to participate in the requirements-specification
and design processes as early as possible, and keeping those users involved
until the system is turned over to them. Also, while the knowledge and skills

o ey TN AR e A AT

required of technicians (or technologists) who are developing knowledge-

based systems are different from the knowledge and skills required of 'systems
analysts" or "programmers" developing conventional computer-based sys:iems, the
fact that they may be involved in exotic applications of computer technology
should not exempt them from normal management scrutiny and control. Common

g e

sense, good judgement, and good management can do much to transform what at

s

the outset appears to be a risky endeavor into a highly successful and |

satisfying one.

System Development Corporation
30 June 1977 7-1 TM-5903/000/00

7. ANNOTATED BIBLIOGRAPHY

The ideas in this annotated bibliography are, we believe, a cross section of
the recent literature on knowledge-based systems and related research. They
are intended to give the reader who is unfamiliar with the Titerature of the

) e N) o S M ot B o 53 et

fi2ld a feeling for the kind of papers that he will encounter in exploring

P

things on his own. Each summary or abstract is headed by the reference
pointer into the general bibliography (Section 8) and the article's title as

B MRS

it appears in that entry.

ANDERSON76b - Rand intelligent terminal agent (RITA): design philosophy.

RITA is a production rule based system for constructing small but competent
agents or other rule based processes such as TECA (see Appendix B). Users
input rules in an English-1ike form with a restricted syntax. Rules may be
executed by one (and only one) of three monitors: LHS scan with ordered rule
set, LHS scan with unordered rule set, and RHS scan (goal directed, backward
chaining) with implicitly unordered rule set. Several agents have been imple-
mented to perform various user functions. This document discusses the design

philosophy and some of the implementation details.

BALLARD76 - A ladder-structured tree for recognizing tumors in chest
radiographs.

This paper describes a computer procedure for the detection of nodular tumors
in chest radiographs. The recognition process uses a hierarchic structure in
the form of a ladder-like decision tree. After locating potential nodules, the
procedure classifies them into non-nodules, nodules that are not tumors, and
nodules that are tumors. It accurately Tocated tumors in five of six radio-
graphs but missed some obscure ones in the sixth. The system contains a great
deal of knowledge about tumors as they appear in radiographs, but it is not

L Ted together in a central knowledge base and is difficult to add to or

a . op2ing represented as procedures.

(@)

System Development Corporation
30 June 1977 7-2 TM-5903/000/00

BOBROWD77a - GUS, a frame-driven dialog system.

GUS (Genial Understander System) is intended to engage a cooperative human in
an English language dialog directed toward a specific goal in a restricted
domain of discourse. The authors implemented GUS in order to determine whether
a modular approach for a dialog system was at all feasible and to test their
notions of reasonable lines of decomposition. GUS provided a context in which
to explore tools and techniques for building and integrating independent
modules. The major knowledge-oriented processes and structures in GUS--the
morphological analyzer, the syntax analyzer, the frame reasoner, and the lan-
guage generator--were built as independent processes with well defined language
or data structures to communicate across the interfaces. They were debugged
separately and tied together by an asynchronous control mechanism. The frame
reasoner was the focus of most of the research and development. The frame
structures (which differ from Minsky's [MINSKY75] used in GUS were a first step

toward a more comprehensive Knowledge Representation Language (KRL) [BOBROWD77b].

BOBROWD77b - An overview of KRL, a knowledge representation language.

This paper describes KRL, a Knowledge Representation Language designed for use
in understander systems. It outlines both the general concepts which underlie
the research and the details of KRL-0, an experimental implementation of some
of these concepts. KRL is an attempt to integrate procedural knowledge with a
broad base of declarative forms. These forms provide a variety of ways to
express the procedures (for memory and reasoning) with specific pieces of knowl-
edge, and to control the relative accessibility of different facts and descrip-
tions. The formalism for declarative knowledge is based on structured concep-
tual objects with as .ociated descriptions. These objects form a network of
memory units with several different sorts of linkages, each having well-
suecified implications for the retrieval process. Procedures can be associated
directly with the internal structure of a conceptual object. This procedural
attachment allows the steps for a particular operation to be determined by
cnaracteristics of the specific entities involved.

i

T

System Development Corporation
30 June 1977 7-3 TM-5903/000/00

The control structure of KRL is based on the belief that the next generation of
inteiligent programs will integrate data-directed and goal-directed processing
by using multi-processing. It provides for a priority-ordered multi-process
agenda with explicit (user-provided) strategies for scheduling and resource
allocation. It provides procedure directories which operate along with process
frameworks to allow procedural parameterization of the fundamental system pro-
cesses for building, comparing, and retrieving memory structures. Future
development of KRL will include integrating procedure definition with the
descriptive formalism.

BOBROWD75b - Dimensions of representation.

In this paper the author proposes a framework for viewing the problems of
representation. Each of the design issues (influenced by Moore and Newell
[MOORE73]) in the framework defines a dimension of representation--a relatively
independent way of looking at representation. The dimensions referred to are:
(1) domain and range, (2) operational correspondence, (3) process of mapping,
(4) inference, (5) access, (6) matching, and (7) self-awareness.

BOBROWD75c - Some principles of memory schemata.
The form of knowledge structures (schemata) is an amalgam of the principles of
semantic networks, actors, and frames. The word schema is drawn from the
psychological literature and is most commonly associated with the work on
memory by Bartlett [BARTLETT32] and by Piaget. The central thesis is that one
schema refars to another only through the use of a description which is depen-
dent on the context of the original reference. These schemata are active pro-
cessing elements which can be activated from higher level purposes and expecta-
tions (top-down) or from input data (bottom-up) that must be accounted for.
"he desire is to specify a memory structure that allows one schema retrieved

- memory to suggest others that should also be retrieved to yield human-like

:¢"~a. and metaphorical retrieval as a fundamental mode of operation.

System Development Corporation
30 June 1977 7-4 TM-5903/000/00

BOBROWR75 - Systematic understanding: synthesis, analysis, and contingent
knowledge in specialized understanding systems.

The best representation for a body of knowledge depends on how that knowledge
is to be used by the program, and thus better characterization of the uses of
knowledge is likely to lead to better ways of designing knowledge representa-
tions. This paper describes the SCA model, a framework for describing the
structure of "conceptually efficient" understanding programs, based on a char-
acterization of three fundamentally different ways in which knowledge is used
in such programs. The SCA model can be of use both to those designing under-
standing systems and to those who wish to study existing systems to develop
insights into different approaches to representing knowledge.

BROWN75a - Uses of artificial intelligence and advanced computer technology in
education.

Advances in hardware technology will make it economically feasible for each
student to have access to computational resources currently available to only

a few elite users. The challenge facing educational technologists is to har-
ness these capabilities to provide equal advances in the quality and effective-
ness of CAI systems. What is needed are new instructional paradigms, not based
on the belijef that computation is a scare resource.

CAI systems understand their subject domain and can use their knowledge base to
help a student experiment with, debug, and articulate his own ideas and reason-
ing strategies. These learning environments support a kind of "learning-by-
doing" in which a student has freedom to éolve problems in his own way, with the
instructional systei following and criticizing the student's line of reasoning.
Examples of such systems are Goldberg's logic teaching system (1973), SOPHIE
(1975), Kimball's system for teaching symbolic integration (1973), Goldstein's
MYCROFT system for enriching the LOGO environment (1974), and Ruth's system

for criticizing sorting programs (1974).

System Development Corporation
30 June 1977 7-5 TM-5903/000/00

BROWN75b - Multiple representations of knowledge for tutorial reasoning.

This paper provides an overview of SOPHIE, an intelligent instructional system
for electronic circuit debugging. Unlike previous AI-CAI systems which attempt
to mimic the roles of a human teacher, SOPHIE tries to create a "reactive"
environment in which the student learns by trying out ideas rather than by
instruction.

SOPHIE's expertise is derived from an efficient and powerful inferencing scheme
that uses multiple representations of knowledge including (1) simulation models
of its microcosm, (2) procedural specialists which contain logical skills and
heuristic strategies for using these models, and (3) semantic nets for encoding
time-invariant factual knowledge. In this respect SOPHIE represents a depar-
ture from inferencing paradigms (of either a procedural or declarative nature)
which use a uniform representation of information.

BUCHANAN76a - Computer assisted chemical reasoning.

Application programs have the immediate goal of serving the scientist.
Research and educational programs have longer range goals of changing the way
scientists formulate problems and how they solve them. The DENDRAL programs
cut across all of these goals. Behind them are the issues involved in turning
a computer system into a valued problem-solving assistant.

BUCHANAN76b - Automatic rule formation in mass spectrometry by means of the
Meta-DENDRAL program.

The DENDRAL computer program uses established rules of molecular fragmentation
to help chemists solve complex structural problems from mass spectral data.
This paper describés a computer program, called Meta-DENDRAL, that can aid in
the discovery of such rules from empirical data on known compounds. The pro-
gram uses heuristic methods to search for common structural environments around
those bonds that are found to fragment, and abstracts plausible fragmentation
rules.

System Development Corporation
30 June 1977 7-6 TM-5903/000/00

COLLINS76 - Processes in acquiring knowledge.

The objectivé of this paper is to develop a theory of Socratic tutoring in the
form of pattern-action (or production) rules for a computer program. These
pattern-action rules are being programmed on a computer system for tutoring
causal knowledge and reasoning.

The production rules were derived from analysis of a variety of tutorial
dialogs. The analysis accounts for the specific teaching strategies used by
the tutors in the dialogs within a content-independent formalism.

The paper includes twenty-three production rules derived from the data analyzed,
together with segments of the data showing the actual application of the rules
in different tutorial dialogs. The strategies themselves teach students:

(1) information about different cases, (2) the causal dependencies that under-
lie these cases, and (3) a variety of reasoning skills. These include such
abilities as forming hypotheses, testing hypotheses, distinguishing between
necessary and sufficient conditions, making uncertain predictions, determining
the reliability or limitation of these predictions, and asking the right
questions when there is not enough information to make a prediction.

DAVIS77 - Production rules as a representation for a knowledge-based consulta-
tion program.

The MYCIN system is at the forefront of two important trends in Al research:
applications of AI to "real-world" problems of importance, and the incorpora-
tion in programs of large amounts of domain-specific knowledge.

This paper examines how the implementation of a knowledge-based consultation
program is facilitated or inhibited by the use of production rules as a knowl-

edge representation. The limits of applicability of this methodology are also
investigated.

System Development Corporation
30 June 1977 7-7 TM-5903/000/00

DUDA77 - Semantic network representations in rule-based inference systems.
PROSPECTOR is a geological consultant system being developed at SRI. This
system is intended to help geologists in evaluating the mineral potential of
exploration sites. Authors have been influenced by MYCIN, INTERNIST (nee
DIALOG), Trigoboff's work on propagating measures of uncertainty through a
semantic network, and by Hendrix's partitioned semantic networks.

This paper describes a way to use semantic network representations in rule-
based inference systems. This combination allows a designer to retain the
desirable modularity of a rule-based approach, while permitting an explicit,
structured description of the seriantics of the problem domain. Since semantic
nets are among the leading interral representations used in computational Tin-
guistics, their use should also simplify the development of a natural language
interface between the system and its users.

ENGLEMORE77 - A knowledge-based system for the interpretation of protein x-ray
crystallographic data.

The broad goal of this project is to develop intelligent computational systems
to infer the three-dimensional structures of proteins from x-ray crystallo-
graphic data. The computational systems under development use both formal and
judgmental knowledge from experts to select appropriate procedures and to con-
strain the space of plausible protein structures. The hypothesis generating
and testing procedures operate upon a variety of representations of the data,
and work with several different descriptions of the structure being inferred.
The system consists of a number of independent but cooperating knowledge
sources which propose, augment and verify a solution to the problem as it is
incrementally generated.

GOLDSTEIN76 - Artificial intelligence, language and the study of knowledge.

This paper studies the relationship of Artificial Intelligence to the study of
language and the representation of the underlying knowledge which supports the
comprenen-isn process. It develops the view that intelligence is based on the

-
|

System Development Corporation
30 June 1977 7-8 TM-5903/000/00

ability to use large amounts of diverse kinds of knowledge in procedural ways,
rather than on the possession of a few general and uniform principles. The i
paper also provides a unifying thread to a variety of recent approaches to
natural language comprehension. It concludes with a brief discussion of how
Artificial Intelligence may have a radical impact on education if the principles
which it utilizes to explore the representation and use of knowledge are made
available to the student to use in his own learning experience.

GORRY74 - Research on expert systems.
Society faces a shortage in expert systems (increased demand, knowledge explo-

sion). Human experts are in short supply; they are not properly distributed
with respect to the needs of society, and the mechanisms that society has
developed for maintaining supply are now inadequate.

Computer-based expert systems could improve the supply and distribution of

expert services to society. They can be mass produced, either in fact or in
principle through time-sharing systems. This will alleviate the problems of
non-uniform access and improper distribution. Secondly, computer-based expert
systems will alleviate the problem of intellectual obsolescence due to the

long time to nurture a human expert. The expert computer program is relatively
insensitive to the time at which knowledge is added to it. It is possible to
add knowledge to the program and instantly disseminate it. In order to build

a computer-based expert system, we will have to know what constitutes expertise;
therefore, the system itself in large part will represent a theory of expertise,

one that can be poked and prodded with various experimental techniques. This
investigation is easier with a separate store of knowledge. By contrast, the
formal education of human experts is by example; it does not use a corpus of
knowledge.

GORRY believes the day of computer-based experts "is a long way off", citing
intrinsic and technological problems for the distribution of expertise by
computer-based expert systems.

System Development Corporation
30 June 1977 7-9 TM-5903/000/00

GRIGNETTI75 - An "intelligent" on-line assistant and tutor--NLS-SCHOLAR.
NLS-SCHOLAR is a system that teaches computer-naive people how to use NLS, a
powerful and complex text editor. It has been designed with the belief that
procedural knowledge is best learned by doing. NLS-SCHOLAR can be used as an
on-line help system outside the tutorial environment. Thus the system can take
the lead at first, and fade smoothly into the background as users become pro-
ficient. This capability of integrating on-line assistance and training is an
extension to the traditional notion of CAI.

KAHN75 - Mechanization of temporal knowledge.

Despite the importance of understanding time in many problem-solving situations,
Al research has largely ignored the temporal characteristics of problems. The
application areas have been chosen to illuminate only particular aspects of a
current theory of intelligence, sidestepping the "messiness" of time-related
problems. This paper considers one way in which knowledge about time can be
incorporated into problem-solving programs. Time knowledge can be embodied in
a set of problem-solving routines which are referred to as the time specialist.
The time specialist can then be placed in the service of a larger problem-
solving program to deal with the temporal questions that arise in the latter's
domain of expertise. The problem-solving program can ask the time specialist
to make inferences and to answer questions concerning temporal specifications;
these queries and requests are phrased in a language that is determined by the

time specialist.

KLAHRD74 - Understanding understanding systems.

Makes general comments related to two papers, "How can MERLIN understand?"
[MOOREJ73] and "Knowledge and its representation in a speech understanding
system" [REDDY74] that describe general features of understanding systems,
and deal with the relation between knowledge and cognition.

KUIPZRS74 - A frame for frames: representing knowledge for recognition.
How can we represent in a computer program the kind of knowledge people

..h-i---------------.......................-................................-

System Development Corporation
30 June 1977 7-10 TM-5903/000/00

manipulate easily and effectively? One of the significant discoveries of Al

has been how computationally difficult are the simple tasks of vision, language,
and common sense reasoning. New frame mechanisms have been proposed by which
the organization of previously accumulated knowledge can assist active percep-
tion and understanding (and recognition). The idea is that if there is too
little computation time when a problem comes up, do some of the work in advance
and keep the computed results availabie. This focuses our attention on the
relationship between immediate perception, understanding, and long-term
knowledge.

This pape: provides an intuitive discussion of frames which can serve as a
foundation for more precise statements.

KULIKOWSKI76 - Clinical consultation and the representation of disease
processes: some artificial intelligence approaches.

With an ever-increasing rate of growth in medical knowledge, the need for
expert consultant services grow apace. Building a flexible and sophisticated
computer-based expert consultation system is a formidable task because of the
complexity and heterogeneity of medical knowledge and our very limited under-
standing of clinical reasoning processes.

Looking back over the past five years we can detect the evolution of a new
phase of computer consultation systems, marked by the building of models of
patients and diseases that combine knowledge from a variety of sources with a
diversity of structural representations, and the experimentation with a varied
array of inferential problem-solving strategies. These systems all use Al
methods in attempting to simulate the activities of an expert consultant,
although they differ substantially in scope and choice of task and methodologi-
cal approaches. The CASNET program has been developed to incorporate the knowl-
edge of a network of clinical researchers in glaucoma. It involves a causal-
associational representation for evolving disease processes and can be used by
a variety of reasoning strategies to provide diagnostic, prognostic, and

System Development Corporation
30 June 1977 7-11 THM-5903/000/00

therapeutic recommendations, together with explanations and references to
diverse expert opinions. This representational scheme (being implemented)
generalizes the semantic description of disease processes and extends the
scone of the control strategies.

MALHOTRA75b - Design criteria for a knowledge-based English language system for
management: an experimental analysis.

The main result of this thesis is to show the utility and feasibility of a
knowledge-based conversational English language support system for managers.
Though an actual system was not implemented, Malhotra supports this feasibility
contention through a detailed experimental analysis of the problem-solving
behavior of 23 subjects with a "hand-simulated" perfect English language system.
These experimental protocols figure prominently in the discussion of the design
of a prototype management support system, one which is technologically feasible.
The utility of such a support system to managers was confirmed by the test sub-
jects in their responses to a questionnaire. The prototype management support
system was designed around a simplifying assumption of an array-structured data
base and a hypothetical lead battery manufacturing company faced with the
problem of lower profits despite increased sales. It is a big step from a simu-
lated prototype system operating with simple problem conditions to an implemen-
tation of a management support system over a real world problem. Nevertheless,
this thesis serves as a valuable introduction to a worthwhile application area
for knowledge-based support systems.

MELDMAN75 -~ A preliminary study in computer-aided legal analysis.

This paper describes a prototype computer system that can perform a simple kind
of legal analysis, the logical derivation of a legal conclusion from a particu-
lar factual situation in the light of some body of legal doctrine. In an
analysis session, the lawyer user sits at a computer terminal and enters a
description of a hypothetical factual situation. A cursory reading of this

dissertation does not explain the motivation of the system: education (hypo-
thetical situation) or consultation (real situation). The system explores its

System Development Corporation
30 June 1977 7-12 TM-5903/000/00

internal representations of various legal doctrines, and determines the extent
to which the hypothetical facts fall with (syllogism), or next to (analogy)
these doctrines. Often the system asks the user to supply additional facts
that it needs in order to make these determinations. The system then informs
the user of its conclusions and explains to the user the logic behind its
reasoning. Whenever possible, it supports its conclusions with references to
judicial decisions and to other authoritative assertions of law.

This kind of KBS requires explicit machine representations for specific factual
situations that are to be analyzed. It is also necessary that the system have
similar representations for more generalized situations in terms of which legal
doctrines can be expressed. Finally, the legal analysis KBS must have proce-
dures for matching the specific facts being analyzed to the more general facts
contained in the doctrine.

MOOREJ73 - How can MERLIN understand?

This paper addresses the question of "How is it possible to understand?" as a
series of design issues that must be met by any understanding program (the
authors' claim). It illustrates the issues by means of current work in arti-
ficial intelligence and data from psychology. It then discusses MERLIN and the
design decisions that characterize it and attempts to answer how the authors
expect Merlin to understand.

The paper introduces Bloom's Taxonomy of Knowledge [BLOOM56] but dismisses it
as not useful for their task. The design issues that are put forth to charac-
terize understandinc are: Representation, Action, Assimilation, Accommodation,
Directionality, Efficiency, Error, and Depth of Understanding.

MORAN73a - The symbolic imagery hypothesis: a production system model.

This dissertation puts forth the general hypothesis that human visual imagery
is symbolic in nature. Assuming that imagery operates in the context of a
cognitive system that is basically a symbolic information processor, this is

System Development Corporation
30 June 1977 7-13 TM-5903/000/00

the most parsimonious (and radical) symbolic imagery hypothesis from the
standpoint of system architecture. This claim is limited to the particular
kind of constructive visual imagery called synthetic imagery (visualization)--

novel images produced by the interpretation of verbal descriptions of an unfa-
miliar spatial situation. Interest is in the information structure and content
of visual images, for this makes a useful cognitive skill.

NILSSON74 - Artificial intelligence.

This paper is a survey of Artificial Intelligence (AI). It divides the field
into four core topics (embodying the base for a science of intelligence) and
eight application topics (in which research has been contributing to core
ideas). The paper discusses the history, the major landmarks, and some of the
controversies in each of these twelve topics. Each topic is represented Lty a
chart citing the major references. These references are contained in an exten-
sive bibliography. The paper concludes with a discussion of some of the
criticisms of Al and with some predictions about the course of future research.

Nilsson's guess is that we still have a gooa deal of work to do on the problem
of how to obtain, represent, coordinate, and use the extensive knowledge we now
know is required. But these ideas will not come to those who merely think
about the problem. They will come to those who both think and experiment with
much larger systems than we have built so far. To build really larger,
"knowledgeable" systems, we will have to "educate" existing programs rather
than attempt the almost impossible feat of giving birth to already competent
ones. It is expected that the combined man-machine strategy which has given
high performance results will be expanded to allow the human expert to trans-
fer skills and knowledge to the machine.

RUBIN75b - Hypothesis formation and evaluation in medical diagnosis.
The structure of medical knowledge necessary for diagnosis is a cause-effect
net. The effects (Tindings) have a structure which consists of a main-concept

and a set of one or more pronerty values. When a piece of data is asserted to

System Development Corporation
30 June 1977 7-14 TM-5903/000/00

the system, an attempt is made to fit it into various slots or finding

specifications; several relationships between an actual finding and a finding-
specification are possible: sufficient, insufficient, further, and contradic-
tory specification. The fitting process is complicated by time considerations.

Need relationships 1like CAUSE, COMPLICATION, and DEVELOPS INTO between the
causes (elementary hypotheses) also play an important role in the global stage
of processing. Elementary hypotheses may be related to more and less specific
etiologies by CHOICE SET and ISA links, respectively. Elementary hypotheses
may have properties associated with them, such as EPISODIC DISEASE and a TIME-
INDEX, both of which help to interpret RECURRENT-SYMPTOMS.

The processing for diagnosis proceeds as foliows: first try to dispose of the
new finding by attributing it to an already-established etiology. Triggering

is the next step, creating active instantiations of previous inactive hypctheses.
Local evaluation determines which of the active hypotheses are to be accepted,
which rejected, and which deferred. Global assembling tries to combine many of
the local hypotheses into a more complex one which is both coherent (the ways
hypotheses can be combined are limited), and adequate (to explain all the data).
Heuristics at the various processing stages of diagnosis serve to reduce the
number of concurrently active hypotheses.

There is no implementation of the theory.

RYCHENER75 - The Studnt production system, a study of encoding knowledge in
production systems.

This paper is concerned with Studnt, a production system implementation of the
STUDENT program of Bobrow (1964). The approach is to make explicit and analyze
the knowledge embodied in STUDENT, and to measure the degree to which that
knowledge is understood by STUDENT; then determine what parts of the knowledge

represent methods, what parts contribute intelligence, and so on.

System Development Corporation
30 June 1977 7-15 TM-5903/000/00

An important motivation behind the analysis of STUDENT is to explore the
properties of production systems (PSs) as an AI language. A PS program speci-
fies its behavior in terms of condition-action rules. The conditions all refer
to a common working memory which is the complete dynamic knowledge state of the
program, and actions are simply changes to that knowledge state. In practice,
the numbers of conditions and actions within a production are both in the range
of half a dozen to a dozen. There are no control primitives as such, but
rather control is achieved through explicit elements of the working memory.
Features of this abstract formulation: (1) uniformity and explicitness of

representation of knowledge; (2) flexibility and intelligence in the sense of
doing a significant amount of condition-testing for each smail sequence of
actions; (3) flexibility also in the sense of being able to respond to unex-
pected items in the knowledge state; (4) modularity of knowledge organization,
following from the way knowledge is encoded in small, independent units. 1In
addition to these attractive properties, there is evidence that a PS-like
organization is prominent in human cognition [NEWELL72a].

Studnt is designed to do only the translation from English-subset expressions
into algebraic equations, which is the most interesting segment of STUDENT from
the view of problem solving and natural language processing. Given an algebra
word problem, Studnt outputs: a set of equations; the set of variables in
those equations as represented by the input text; and a set of variables to be
solved for. Studnt is implemented in Psnist (PS analyst), a PS language speci-
fically designed for AI applications.

SHORTLIFFE75b - Computer-based consultations in clinical therapeutics:
explanation and rule acquisition capabilities of the MYCIN system.

This report describes progress in the development of an interactive computer
program, MYCIN, that uses the clinical decision criteria of experts to advise
physicians who request advice regarding selection of appropriate antimicrobial
therapy for hospital patients with bacterial infections. Since patients with
infectious diseases often require therapy before complete information about the

System Development Corporation
30 June 1977 7-16 TM-5903/000/00

organism becomes available, infectious disease experts have identified clinical

and historical criteria that aid in the early selection of antimicrobial therapy.

MYCIN gives advice in this area by means of three subsystems: (1) A Consulta-
tion System that uses information provided by the physician, together with its
own knowledge base, to choose an appropriate drug or combination of drugs;

(2) An Explanation System that understands simple English questions and answers
them in order to justify its decisions or instruct the user; and (3) A Rule
Acquisition System that acquires decision criteria during interactions with an
expert and codes them for use during future consultation sessions. A variety
of human engineering capabilities have been included to heighten the program's
acceptability to the physicians who will use it. Early experience indicates
that a sample knowledge base of 200 decision criteria can be used by MYCIN to
give appropriate advice for many patients with bacteremia. The system will be
made available for evaluation in the clinical setting after its reliability
haglbeen shown to approach that of infectious disease experts.

SIEEHARAN73 - A heuristic program to discover syntheses for complex organic
m ules.

The challenge of this work arises from the complexity of the task of organic
chemical syntnesis, the large base of scientific knowledge and vocabulary
required, and the abstruse rules of reasoning employed by experts.

Synthesis involves (1) the choice of a molecule to be synthesized; (2) the
formulation and specification of a plan for synthesis, involving a valid reac-
tion pathway leading from readily available compounds to the target compound;
(3) the selection of specific steps of reaction and their temporal ordering
for execution; (4) the experimental execution of the synthesis; and (5) the
redesign of syn<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>