An Architecture for Concurrency Control

J.A. Barnett, D.E. Cass, and W.E. Betts

Northrop Research and Technology Center
One Research Park
Palos Verdes Peninsula, CA 90274

Extensive automation is necessary to reap the full promise of concurrent
engineering because (1) many of the participating disciplines already use
sophisticated automation to accomplish their functions and (2) the need for
input from these disciplines continues throughout the product’s life cycle
even if just sporadically. The first point indicates that successful automa-
tion must address enterprise integration, while the second indicates that
systems must have coherent knowledge of where functional responsibility
and authority are to be found over time.

In other words, concurrent engineering must provide a ubiquitous orga-
nizational structure for the life cycle of products, not just for the first phases
of the design process. Below, an architecture that accepts this challenge is
discussed. The ideas emanate from our use of Justin [1], a tool to build
functioning prototypes of enterprise automation.

Justin provides (1) a limited ability to simultaneously distribute design
objects to multiple enterprise activities, (2) a data management facility that
reduces order dependency among updates, and (3) a high-level protocol
that supports object distribution, data update collection, and communi-
cation of control information. Unfortunately, these primitive mechanisms
are necessary but not sufficient to provide complete automation support for
concurrent engineering.

Our experience suggests an approach that we are now revising Justin to
explore. The envisioned system is one where objects are maintained and
controlled by a logically centralized process. Objects can be such things as
the representations of products, parts and components, engineering change
orders, liaison requests, etc. The controller stores representations of ob-
jects, distributes copies to proper enterprise activities, and accumulates and
associates information, generated by the activities, with the objects.

Proc. AAAT-90 Workshop Concurrent Engineering Design (Boston, 8/1/90).

The controller must perform these tasks in concert with enterprise, cus-
tomer, and government rules and procedures. National agenda, such as the
concurrent engineering initiative, are changing and will continue to change
these rules and procedures which already differ by object type, customer,
and product class. Therefore, the controller must be able to absorb control
regimes that are properly specialized.

A state-machine formalism is a good way to express these control con-
straints; A state is an important epic in the product’s life cycle. The rep-
resentation of a state should dictate which functional activities have ac-
cess to object copies and what to do as a result of object modifications
by these activities. Object modifications can effect specialized properties
such as a CAD model associated with a part representation, however, most
modifications are additions of textual critiques such as requirements state-
ments, summaries of results computed by analysis activities, and approval
signatures.!

State specifications provide enablement of concurrent simultaneous ob-
ject processing but do not provide sufficient mechanism to control it. Con-
sider a simple problem: simultaneously, seek the n necessary approval sig-
natures for a document change request (DCR). If, before signing, one of the
n adds a question critique to the DCR, communicate that question to the
subset of the n who have not yet returned their copy of the DCR to the cen-
tralized controller. A straightforward state-machine implementation needs
something in the order of 2" states to accomplish this trivial-sounding task
because there would need to be a state to represent each set of terminated
activities and there are 2™ possible sets. Many other cases exist where the
number of control regime states can grow exponentially.

There are simple ways to augment state machine formalisms to defeat
growth problems. The easiest is to use standard programming language
constructs. However, this move loses two major benefits expected from a
state machine formalism: (1) application specialists, e.g., system engineers,
configuration controllers, and project managers, can specify, modify, and
understand control regimes and (2) the system architecture is flexible enough
to provide experimentation with alternative policies.

Before proposing a solution to this problem, another must be considered

1 Justin provides languages to specify critique regimes as well as control regimes. Both
are necessary to properly express policy about who has authority to do what while the lat-
ter, in addition, is directly germane to concurrent engineering issues. The object controller
interprets control regimes to determine object disposition and state changes. Interpreter
state is stored with the object’s representation.

in more detail. The second problem is how to determine who has authori-
ties and responsibilities for various functions during the whole life cycle. It
should be noted that in today’s manufacturing environment, virtually all
policy and procedure is expressed in terms of authorities.? Therefore, this
problem must be addressed by any system that proposes to integrate enter-
prise automation whether or not it permits concurrent simultaneous object
processing—concurrency just makes things worse.

An example will display the problem. Engineer E prepares a DCR and
one of the necessary approval signatures is from a safety activity. The ap-
propriate safety group is determined by the component class (electronic,
hydraulic, etc.), customer class (government or commercial), E’s organiza-
tion (the enterprise is a matrix organization so the local political structure
is involved), etc. Once the group is identified, S, its supervisor, is found to
have the proper signature authority. However, S is away at a conference and
she has delegated that authority to s. Unfortunately, s has a question which
he adds to the DCR. The question is communicated to F, via the automatic
system and he appends an answer. Next, his answer must be routed to the
safety group authority, but, in the meantime, S has returned to work and
reclaimed her authority from s. Who should get E’s response: s or S?

Problems like the above are sure to occur frequently because the typical
employee in the USA is away from his work place more than 10% of the
time—total of vacation, holidays, illness, personnel business, and off-site
business appointments. Concurrent engineering will make it a central issue
because the amount of communications will increase as will the reliance
on rapid input from other disciplines. Further, products such as complex
weapons systems have life cycle times that exceed two decades. People come
and go and enterprises reorganize as these years pass but design changes and
improvements happen throughout the entire period. For all of these reasons,
it is clear that authority and activity bindings do not remain constant.

State explosion and authority determination problems make implemen-
tation of automated concurrent engineering tools difficult. These problems
are encountered in the real world already and they are the problems that new
automation must solve if there is to be any genuine progress. Since many of
the issues raised here do not arise in idealized or abstract enterprise models,
they have received less attention than is appropriate.

2Task responsibility is represented as an authority to officially submit documentation
for a requirements sign off and even these requirements are ultimately boiled down to a
specification that the requirement is met if and only if one who has the authority to do
so signs that the requirement is met.

A A

Activity e e Activity

R Y v
| Concurrency Controller | e | Concurrency Controller |
7y X

Y Y

Centralized Object Controller
Object Database | Activity/Authority Database | Interpreters
Critique Regimes | Control Regimes

Figure 1: An architecture for concurrent engineering.

Figure 1 is an overview of an architecture to deal with these problems.
The centralized controller maintains the object database and a database of
authority-to-activity mappings. It also maintains the control and critique
regimes both for the use of its interpreters and for dissemination to other
parts of the system. The control regime interpreters use the object database
to store their processing states. When interpreted control regimes make state
transitions, parameters that grossly characterize a set of activities and their
interactions are used to initialize a separate concurrency controller. This
controller coordinates activities as they perform their functions in regards
to a single object.

Concurrency controllers communicate, to the central interpreters, events
that must be logged or can cause state transitions in addition to routing
data among the activities involved. We are currently designing a specialized
language for the concurrency controllers. CSL [2] is an example of a base
language that may be suitable for this application. The goal is to make
concurrency control perspicuous rather than just efficient.

The activities and authorities database help make the system function
coherently. The activity specifications passed to the concurrency controllers
are actually handles to activity expressions that can be evaluated, on request
by the centralized data management system. Evaluation of an activity ex-
pression produces a destination address and an indication of the procedure
to be followed when an object copy is transmitted there. If the destination
is a gateway to an activity’s automated subnetwork, this is just business as
usual. Interesting cases occur when an activity interface is not electronically
connected to its individuals because of security or economics.

The activity and authority database can be modified in many ways.
The main variation is to formally copy the system on authority transmittal
documents. If this were always done in a timely manner, there would be
no problem. However, the system will often find out, for the first time,
that a particular authority has been transfered (and where) when the old
authority holder is addressed. The system must learn from these encounters
too. Many times, an authority will be transfered to another individual in
the same activity but not always. Thus, authority transfers can effect the
protocol at the activity interface in addition to the destination used.

The reason that the authority database must be centralized is that the
information it learns may be needed to properly interpret other objects as
well as other states of the same object. For example, an authority associated
with a part might be used on its subcomponents also. The object database
and the interpreters are centralized because a state transition of one object
can effect others. For both databases the requirement is for logical central-
ization which is another way of saying that things must be kept reasonably
consistent. In many cases, an actual implementation can take liberties. One
class of liberties is institutionalized by the idea of concurrency controllers.
They are possible precisely because they take advantage of opportunities
where pinpoint synchronization among objects is unnecessary.

References

[1] Barnett, J.A., An architecture for integrating enterprise automation,
Northrop Research and Technology Center, Palos Verdes, CA, 1990.

[2] Barnett, J.A., Module linkage and communication in large systems, in
D.R. Reddy (ed.), Speech Recognition: Invited Papers of the IEEE Sym-
posium, pp. 500-520, Academic Press, NY 1975.

