
A Wrinkle on Satisficing Search Problems∗†

Jeffrey A. Barnett‡ and Don Cohen

USC/Information Sciences Institute
4676 Admiralty Way

Marina del Rey, California

Abstract

The problem of optimally ordering the execution of independent disjuncts is
explored. Only a single answer is sought, not necessarily the best one. By
definition, this is called satisficing search. Since the disjuncts are indepen-
dent, the total combined probability that a solution is found does not depend
on the execution order. However, the ordering does affect the total expected
execution time because execution ceases as soon as any solution is discovered.
Therefore, the optimal ordering is the one that minimizes the total expected
work. The new result is an algorithm to find this optimal ordering when the
effects of executing a disjunct must be undone before another one can be
tried. The algorithm is shown to have time complexity O(n log n), where n
is the number of disjuncts. This is the same complexity as for the original
problem where undo times are ignored.

∗This research is supported by the Defense Advanced Research Projects Agency under
Contract No MDA903 81 C 0335. Views and conclusions contained in this report are the
authors’ and should not be interpreted as representing the official opinion or policy of
DARPA, the U.S. Government, or any person or agency connected with them.
†Originally appeared in the Proceedings of International Conference on Artificial Intel-

ligence 8 (1983).
‡Current email: jbb@notatt.com

1



A Wrinkle on Satisficing Search Problems 2

Introduction

Many investigators have examined problems of satisficing search: try the
available methods one at a time until one of them satisfies the stated criteria,
then stop. The objective is to find a method ordering with the least expected
cost to solve the problem. Typically, only the probability of success and the
expected cost are known for each method.

Method i is pairwise preferred to method j if, given only these two meth-
ods, it is less expensive to try i first. Pairwise preference is transitive. There-
fore, if the optimal ordering of n methods is m m1m2 . . .mn and mn+1 is
added, it is merely inserted somewhere in the original ordering—all original
methods stay in the same position relative to one another.

Below, the original problem is generalized: Associated with each method
is a cost that must be paid, after trying the method, if another method is to
be used. For example, the cost may be the time to undo the changes to the
problem-solving state so that another method can be executed in the proper
context.

The pairwise preference relation is no longer transitive and the simple
insertion scheme is lost for the generalized problem. However, the criteria
for optimal ordering is straightforward to derive. An algorithm that finds the
optimal ordering is given, and it is shown to be of the same time complexity
as the one for the original problem, namely O(n log n).

The Original Problem

A set of methods is available, each of which has the potential to solve the
same given problem. The methods can be applied to the problem in any
order; however, they may only be tried one at a time. If one of the methods
solves the problem, the remaining untried methods need not be used. In other
words, only one solution is desired or necessary, and there is no interest in
extra solutions nor any other results that might be produced by method
execution.

The usual statement of problems in this class assumes that the proba-
bility that a particular method is successful and the execution cost of the
method are independent of the order of execution and whether or not any
other method is successful. Without this independence assumption, there is
no general optimal ordering because the tradeoff between higher probabil-

Proceedings of International Conference on Artificial Intelligence 8 (1983).



A Wrinkle on Satisficing Search Problems 3

ity of success and lower expected cost is an application-dependent issue; the
most general result possible then, is a partial ordering for method execution.
However, with the independence assumption it follows that the total prob-
ability that at least one method will find a solution is independent of the
order in which the methods are tried. Therefore, the residual problem is to
determine the ordering with least expected cost.

A typical example of this class is the following: Let pi be the probability
that method i solves the stated problem and define qi = 1− pi. Further, let
ci be the expected cost of trying method i. For example, ci = pisi + qiui,
where si is the expected cost when successful and ui is the expected cost
when unsuccessful. What is the best order in which to apply a given set of
methods to find a solution with the least expected cost?

The answer is simple:1 Define ϕi = pi/ci. Apply first the method with
largest ϕ; if it fails, try the method with the next largest ϕ, etc. The order
of application among methods with the same ϕ value is immaterial to the
total expected cost of finding a solution.

Two features of this result are noteworthy. First, a merit score (namely
ϕ = pi/ci) can be calculated for a method independent of what other methods
exist. Thus, if a new method becomes available, it can be evaluated sepa-
rately and inserted into the current ordering of previously available methods
with the assurance that the new ordering is optimal. Second, as a conse-
quence, the pairwise preference ordering is transitive: Method i is preferred
to method j if given only methods i and j, the expected cost of trying i
before j is less than trying j first, i.e., ϕi > ϕj. This preference relation
is surely transitive: if i is preferred to j and j is preferred to k, then i is
preferred to k.

Next, a slight generalization of this problem is considered where both the
simple insertion property and transitivity disappear.

A Generalization

As in the original problem, pi is the probability that method i will solve
the stated problem, qi = 1 − pi, and ci is its expected cost. In addition,
let di be the cost incurred if method i fails and another method must be
tried. For instance, if ci is interpreted as the time necessary to determine

1See Simon, H. A., and J. B. Kadane, “Optimal Problem-Solving Search: All-or-None
Solutions,” Artificial Intelligence 6 (1975), 235–247 for this and other related results.

Proceedings of International Conference on Artificial Intelligence 8 (1983).



A Wrinkle on Satisficing Search Problems 4

whether the i’th medication combats a disease, then di can be interpreted
as the detoxification time necessary before a different medication can be
tested. Another interpretation of di is the expected cost to undo the effects
of executing method i on the problem-solving state so that another method
can be tried. The goal in this problem is to determine the correct medication,
if any (or simply solve the problem), in the least expected time. For the
original problem, all di = 0.

An Example

Define Cij, as the expected cost of (1) trying method i, (2) if it fails, waiting
for time di, then (3) trying method j. It is evident that Cij = ci + qi(di + cj)
and that method i is preferred to method j if Cij < Cji. Suppose three
methods are available with these values of p, c, and d — e and Φ are defined
below.

i pi ci di ei Φi

1 .4 9 14.6 17.76 .0225
2 .5 10 18.9 19.45 .0257
3 .6 15 20.0 23.00 .0261

Then the six possible values of Cij, are

C12 = 23.76 C21 = 23.95
C23 = 26.95 C32 = 27.00
C31 = 26.60 C13 = 26.76

Thus, method 1 is preferred to method 2 (C12 < C21), method 2 is preferred
to method 3 (C23 < C32), but method 3 is preferred to method 1 (C31 <
C13). Therefore, this example shows that the pairwise preference order is not
transitive.

Formal Definitions

Though the pairwise preference relation does not induce a total ordering on
the set of methods, the optimal ordering can be determined in the same order
of time as for the original problem, O(n log n). Some notation is necessary

Proceedings of International Conference on Artificial Intelligence 8 (1983).



A Wrinkle on Satisficing Search Problems 5

to develop this result. Let S be a sequence of methods and define PS as the
probability that at least one method in S solves the problem; QS = 1− PS.
Let CS be the expected cost of trying the methods in S in the order mentioned
(halting if one of them succeeds). Finally, DS is the detoxification time
necessary if all the methods in S fail and additional methods are to be tried.

Let ∅ be the null sequence and i any method, then P∅ = 0, Q∅ = 1,
C∅ = 0, and D∅ = 0; Pi = pi, Qi = qi, Ci = ci, and Di = di. The following
recurrence relations hold where S and T are sequences of methods and ST
is the sequence formed by concatenating these two.

PST = 1−QST

QST = QSQT

CST = CS + QS[DS + CT ] T 6= ∅
= CS T = ∅

DST = DT T 6= ∅
= DS T = ∅

It is easy to see that these definitions are associative, i.e., X(ST )U = XS(TU)

where X = P , Q, C, or D.

Optimal Ordering

The criterion for ordering nonfinal methods is straightforward to develop
using these definitions. Let S, T , U , V be any sequences of methods such
that V 6= ∅.

CSTUV = CS((TU)V )

= CS + QS[DS + C(TU)V ]

= CS + QS[DS + CTU + QTU [DTU + CV ]]

If i and j are methods, then CSijV ≤ CSjiV is the criterion that i come before
j. The expansion above, first with T = i and U = j then with T = j and
U = i, allows the transformation

CSijV ≤ CSjiV

Cij + QijDij ≤ Cji + QjiDji

Proceedings of International Conference on Artificial Intelligence 8 (1983).



A Wrinkle on Satisficing Search Problems 6

because all other terms cancel and Qij = Qji Now, this form can be elabo-
rated using the above definitions, then simplified as follows

ci + qi[di + cj] + qiqjdj ≤ cj + qj[dj + ci] + qjqidi

(1− qj)ci + qi(1− qj)di ≤ (1− qi)cj + qj(1− qi)dj

pjci + qipjdi ≤ picj + qjpidj

pj/(cj + qjdj) ≤ pi/(ci + qidi)

It is convenient to define ei = ci + qidi and to note that ei is the total
expected time, including detoxification, to try method i when it is in any
nonfinal position in the ordering. (For sequences S and T , the recurrence
relation is EST = ES + QSET and in terms of C, Q, and D the relation is
ES = CS +QSDS.) Thus, the criterion that method i come before method j
is

pj/ej ≤ pi/ei

Since the steps in the derivation are reversible, this is both a necessary and
sufficient condition. It is convenient to define Φi = pi/ei and note that Φ
plays the same role here for nonfinal methods that ϕ did for all methods in
the original problem.

The optimal ordering tries the nonfinal methods in order of decreasing
Φ because Φi depends only on the i’th method and clearly induces a total
ordering on these methods. Among methods with equal Φ, the ordering is
immaterial. The Φi can be calculated and the methods sorted on its value
in time 0(n log n).

However, the final method is not necessarily the one with lowest Φ. Let
m1 . . .mn be an ordering consistent with Φi ≥ Φi+1. Then for all except
one method, say method j which should be final, the remaining methods
are in this order. Therefore, the optimal ordering is the one of the form
m1 . . .mj−1mj+1 . . .mnmj for which C is minimized.

Let S = ml . . .mj−1 and T = mj+1 . . .mn where T 6= ∅. Then the optimal
ordering is the one that maximizes CSjT − CSTj > 0. If all differences are
nonpositive, the original sorted ordering is optimal. This difference expands
as

CSjT − CSTj = CS + QS[DS + CjT ]− [CS + QS[DS + CTj]]

= QS[CjT − CTj]

= QS[cj + qj[dj + CT ]− [CT + QT [DT + cj]]]

= QS[PT cj + qjdj − [pjCT + QTDT ]].

Proceedings of International Conference on Artificial Intelligence 8 (1983).



A Wrinkle on Satisficing Search Problems 7

For all j, the differences are calculated and the maximal one selected in time
O(n) by the algorithm described next.

The Algorithm

The algorithm in figure 1 is written in SIMULA as the class, method ordering.
There are n methods stored in the array m. Each method has the defined
attributes id (a method identifier) and p, c, and d as described above. The
derived attributes of a method are q, e, and phi, where phi = p/e. The pro-
cedure, sort on phi, is not shown explicitly; it may be any sorting algorithm
that orders m on nonincreasing values of phi in time O(n log n).

Procedure order uses sort on phi then finds an optimal ordering. The
steps are (1) find QS for each S = m1 . . .mi by noting that Qs = ql ∗ · · · ∗ qi,
(2) starting with T = mn, iterate backwards until T = m2 . . .mn and find the
maximal difference, and (3) if the maximal difference is positive, rearrange m
into the optimal ordering. In all cases, DT = dn. However, QT and CT must
be updated using QjT = qjQT and CjT = cj + qj(dj + CT ) so the iteration
simulates T := jT at each step.

If order is applied to the numerical example above, these steps occur.

1. The methods are sorted into the order {321} by their Φ values.

2. Two iterations are performed with the result that dif = .076 when j = 2
and dif = −.25 when j = 1 These iterations represent, respectively, the
orderings {312} and {213}.

3. Since the maximal difference occurs when j = 2 and is positive, m is
rearranged into the optimal ordering {312}.

For reference, the six values of Cijk are

C321 = 32.580 C231 = 32.750
C312 = 32.504 C123 = 33.930
C213 = 32.830 C132 = 33.960

Conclusion

It is noted above that the transitivity property of the pairwise preference rela-
tion is lost in the generalized problem. Further, the simple insertion property

Proceedings of International Conference on Artificial Intelligence 8 (1983).



A Wrinkle on Satisficing Search Problems 8

CLASS method_ordering(n); INTEGER n;

BEGIN CLASS method(id,p,c,d); TEXT id; REAL p,c,d;

BEGIN REAL PROCEDURE q; q:=l-p;

REAL PROCEDURE e; e:=c+q*d;

REAL PROCEDURE phi; phi:=p/e;

END method;

REF(method) ARRAY m[l:n];

PROCEDURE sort_on_phi;;

PROCEDURE order;

BEGIN REAL ARRAY qs[O:n];

INTEGER j,best_j;

REAL dif,best_dif,qt,ct,dt;

REF(method) x;

sort_on_phi;

qs[O]:=1.O;

FOR j:=l STEP 1 UNTIL n DO qs[j]:=qs[j-l]*m[j].q;

qt:=m[n].q;

ct:=m[n].c;

dt:=m[n].d;

FOR j:=n-1 STEP -1 UNTIL 1 DO

BEGIN dif:=qs[j-l]*((1-qt)*m[j].c+m[j].q*m[j].d

-(m[j].p*ct+qt*dt));

IF dif>best_dif THEN

BEGIN best_dif:=dif; best_j:=j; END;

ct:=m[j].c+m[j].q*(m[j].d+ct);

qt:=m[j].q*qt;

END;

IF best_dif>0.0 THEN

BEGIN x:-m[best_j];

FOR j:=best_j+l STEP I UNTIL n DO

m[j-1]:-m[j];

m[n]:-x;

END;

END order;

END method-ordering;

Figure 1: SIMULA program that finds the optimal ordering

Proceedings of International Conference on Artificial Intelligence 8 (1983).



A Wrinkle on Satisficing Search Problems 9

is lost too. In the original problem, a new method could be evaluated sepa-
rately, i.e., ϕ = p/c is calculated and does not depend on what other methods
exist, then the new method is inserted into the existing optimal ordering of
other methods so that ϕ values are nonincreasing. The new ordering is then
known to be optimal. In the new problem, this is not possible because the
current optimal ordering may have an arbitrary method as the final method.

The reason that both transitivity and the simple insertion property are
lost is easy to see—the expected cost of a method depends on its place in the
ordering: If a method is in a nonfinal position, its cost is ei but if it is the
final method, its cost is ci.

Another possible generalization of this class of ordering problems suggests
itself; suppose the detoxification time between method i and method j is dij,
i.e., d depends upon both the preceding and succeeding methods. Now the
computation of the optimal ordering becomes at least as hard as the version
of the traveling salesman problem where the salesman must visit each city
once but does not need to return to his starting point. To see this, assume
that p and c are the same for all n methods and q = 1 − p is very nearly
equal 1. Then the cost of an ordering j = j1 . . . jn, where j is a permutation
of the first n natural numbers is

Cj = c[1 + q + q2 + · · ·+ qn−1] + qdj1j2 + q2dj2j3 + · · ·+ qn−1djn−1jn

≈ nc +
∑

djiji+1

The approximation is justified since q is very nearly equal to 1. Minimizing
Cj reduces to minimizing the summation over the permutations, j, and this
is the traveling salesman problem.

Proceedings of International Conference on Artificial Intelligence 8 (1983).


