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Abstract

Energy versus delay tradeoffs are explored for systems that must manage energy

expenditure as well as computation deadlines. The focus is execution of a single process

on a single processor. Two probabilistic process models are considered along with a

family of power dissipation models. The first process model assumes that process

complexity is exactly c cycles with probability p(c). The second model considers the

detailed branching and loop structure of the code. Probabilities are attached at branch

points. The power models assume that energy dissipation per cycle is proportional to

vm and that execution time for a cycle is proportional to v−n, where v is supply

voltage. The energy versus delay tradeoff is implemented using dynamic voltage and

clock adjustments. The problems solved include 1) minimize expected execution time

given a hard energy budget and 2) minimize expected energy expenditure given a hard

deadline. The problem of minimimizing the expected value of Q(E, T ), where Q is a

penalty function and E and T are, respectively, total energy and total time, is also

solved using the first process model. Analysis determines theoretical conditions where

it may be profitable to switch voltage or modify an a priori voltage schedule.
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1 Background, Summary, and Contributions

1.1 Background

Resource management has always been a primary focus area within computer science. Virtu-

ally all pragmatic models of computation contain a layer—the operating system—dedicated

to it. The resources managed typically include the CPU, memory, secondary storage, and

device access. Object controllers and other systems that interact with their environments

have special resource-management constraints that are called hard (or soft) realtime require-

ments. Properties of, and algorithms for realtime systems and resource management are

among the most studied in computer science.

Energy is a relatively recent addition to the list of resources that must be managed. This

is driven, in part, by increased computation capabilities and miniaturization that entail heat

density and dissipation problems [38]. Thus, energy management problems exist for large

systems such as servers [30, 36, 37, 38, 39] as well as portable devices [12, 29, 30, 37]. Another

driver is economics: energy costs money.

There are other classes of systems that must be radical more power aware. Two examples

are space systems [42] and unattended, distributed sensor networks [47]. The Sky Tower

aircraft with an endurance goal of six months using electric engines [2] is a third example.

These systems use batteries as buffers but must scavenge energy from the environment to

achieve long endurance. Solar panels are one potential energy source; vibration, chemical,

and ambient heat are other possibilities. Energy availability is not constant so optional

activities must be scheduled for times of plenty, e.g., when solar panels are illuminated, and

all but the most urgent needs must be deferred at other times. Many such systems use single

thread architectures to conserve and control resource expenditures.

Several approaches to energy management are currently being pursued. Many researchers

are investigating hardware improvements that will reduce energy consumption with minimal

or no impact on runtime performance. Examples include use of two different supply volt-

ages within the same chip [20], use of two identical processors where each has a different

supply voltage [45], dynamical control of L2 cache line size [25], distribution within a super

scalar chip design [49], use of FPGA devices [33], and design of bus structures that use less

energy [28]. These approaches promise “automatic” savings because the hardware is more

energy efficient. Several studies [25, 31, 49] propose metrics to measure the ultimate success
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of these investigations. Proposed minimization objectives have the form ET α, where E is

the energy used by a test computation, T is its execution time, and α is a constant.

Another approach—the one investigated herein—provides controls used by the applica-

tion and/or the operating system to effect an energy versus performance tradeoff at run-

time. This possibility is interesting because many, if not most, energy-constrained systems

also have temporal constraints [3, 32]. The available controls are the supply voltage and

the clock frequency. When the voltage is increased, the clock frequency can be increased.

However, the energy cost per unit of computation will also increase. Several commercially

available processors provide voltage/clock controls: Intel Xscale and Strongarm [21], Trans-

meta Crusoe [44], AMD K6-2+[1], and the IBM 405PL [23] and are some examples. The

Advanced Configuration and Power Management (ACPI) specification provides standard

interfaces for low-power states and energy and thermal controls as well as plug-and-play

hardware protocols [22].

Generally, researchers following the program pursued herein concentrate on minimimizing

energy consumption given hard or soft temporal constraints [3, 12, 16, 17, 29, 30, 32, 36,

37, 39, 38, 41, 45, 48]. Of these, only Cao [12] and Qiu and Pedram [38] note that the dual

problem—minimize expected execution time given an energy budget—is also significant.

Both formulations are addressed below.

1.2 Summary

Section 2 introduces the power models and the process models used for algorithm develop-

ment and analysis. The power models specify relations between supply voltage levels and

processor speed and rate of energy consumption. The process models encode probabilistic

knowledge about process complexity measures in cycles. Two process models are examined:

The simple probabilistic model provides the function p, where p(x) is the probability that

process complexity is exactly x cycles. A structural process model provides a flow graph of

the process. The associated metrics are the complexities of the simple segments (the graph

nodes) and the probabilities of branching from one segment to another one.

Section 3 formulates a set of optimization problems and solves them analytically using a

specific simple power model, then Section 4 provides the optimal solutions for the same opti-

mizations using arbitrary power models. Two optimizations—find the voltage schedule that

minimizes expected execution time given a not-to-exceed energy budget and find the voltage
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schedule that minimizes expected energy consumption given a not-to-exceed deadline—are

solved for both the simple probabilistic and structural power models. A third optimization—

find the voltage schedule that minimizes the expected value of Q(E, T ), where E is total

energy expenditure, T is total computation time, and Q is a general penalty function—is

solved for the simple probabilistic process model.

Section 5 discusses methods for gathering process metrics—the probabilities and com-

plexity estimates that comprise process models—and how to insert that information in appli-

cation systems. The probabilities are available from general application knowledge, domain

models, and feedback from system executions. The complexity measures, on the other hand,

are generated from machine models, cycle-level simulators, and compiler analyses.

Section 6 analyzes the optimality results. Optimal strategies are compared to strategies

that predict average-case behavior. The optimal strategies always behave as though future

complexity will be worse than average. Other analyses discuss the value of using updated

complexity information promptly and the robustness of the optimal algorithms to parameter

estimation errors. Finally, it is shown that voltage levels in optimal strategies can only

change at points where something new is learned about future complexity of the process. At

all other points, voltage remains constant. Section 7 provides the conclusions.

1.3 Contributions

The focus of this article is how best to use voltage and clock controls to effect application-

driven energy versus delay tradeoffs. The investigation assumes a single process or a de-

pendent set of tasks executing on a single processor. This restriction is imposed for two

reasons: The first is that many energy-constrained systems are organized this way [41]. The

second reason is that exact, basic optimization methods are needed as the building blocks

for schedulers that handle multiple processes executing on multiple processors. Gruian [17]

notes that one of the main reasons behind using task-level scheduling techniques is that

they can lower the energy consumption of a certain task without requiring strong knowledge

about the other tasks in the system and one can also use classic scheduling techniques at

system level and still get energy efficiency.

Several results developed below appear to be novel. The first is the solution of optimiza-

tion problems where energy is the constrained resource and expected execution time is to

be minimized. The second is the formulation and solution to minimizing the expected value
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of the general penalty function Q(E, T ), where E is energy consumption and T is execution

time. The third contribution is the development of optimal techniques to schedule processes

from their structural models. Perhaps the most significant result is an analysis that deter-

mines when an optimal voltage schedule will change voltage and hence computation speed

and energy consumption rate, and when these parameters will remain constant: voltage level

will only change in an optimal schedule when something new is learned about the future

complexity of the process.

2 Power and Process Models

Section 2.1 introduces the power models and Section 2.2 introduces the process models used

for the optimizations performed in Sections 3 and 4.

2.1 Power Models

Many modern computers permit voltage and clock frequency to be modified by the executing

program. Some examples are the Intel Xscale and Strongarm [21], the Transmeta Crusoe [44],

the AMD K6-2+ [1], and the IBM 450PL [23]. Increased voltage permits increased clock

frequencies to be used. The penalty for faster computations is increased energy consumption

per unit of computation. That unit is the cycle. Cycles are used to measure execution

progress rather than instructions because cycles are reasonably similar to one another in

terms of energy dissipation and execution time while instructions are not [17, 29, 32, 41, 48].

The general models for the energy expenditure and time to execute c cycles, respectively,

are e = αcvmdd and t = βcvdd/(vdd − vT )
n+1, where vdd is supply voltage (the variable) and vT

is threshold voltage [10, 14, 40]. The constants vT , α, β, m, and n depend on the architec-

ture. Martin [31] discusses “smooth circuits” where vT scales with vdd so that t = β′c/vndd

would represent execution time, and many authors [16, 29, 37, 41, 45], while acknowledg-

ing the effects of vT , ignore it either in optimizations, examples, or testing. Manzak and

Chakrabarti [30] note that when vdd > 3vT , only a 0.1% error is introduced if vT = 0 is

assumed, i.e., the voltage schedule developed ignoring vT uses only 0.1% more energy than

an optimal schedule. For these reasons, the power model can be simplified to e = αcvm and

t = βc/vn, where v = vdd. A further notational simplification follows if the units of e and t

are chosen to entail e = cvm and t = c/vn.
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Two limitations on speed adjustments should be noted: 1) voltage and clock levels are

discrete and 2) minimum and maximum levels are imposed by the hardware. For example,

the Transmeta Crusoe [44] provides as many as two clock frequencies for a single voltage

level and 36 combinations. However, Gutnik and Chandrakasan [18] and Namgoang et

al [35] discuss architectures where continuous speed adjustments are possible and Melhem

et al [32] note that systems which are able to operate on a (more or less) continuous voltage

spectrum are rapidly becoming a reality thanks to advances in power supply engineering and

CPU design. Chandrakasan et al [13] shows that a few voltage/speed levels are sufficient to

achieve almost the same energy savings as infinite levels.

The development below follows Lorch and Smith [29] and Shin et al [41] by assuming

that voltage can vary continuously. However, many studies [16, 32, 48] do deal with issues

of discrete and limited settings and their work should be consulted when these effects are

important in particular applications. Techniques to deal with limitations on minimum and

maximum voltage settings are discussed elsewhere [3, 48].

It should also be noted that changing processor speed through voltage and/or clock

adjustments may exact time and energy penalties [11, 21, 36, 39, 44, 48]. Lorch and Smith [29]

assume that changing voltage incurs little or no overhead and Aydin et al [3] suggest, as will

be assumed here, that these penalties simply be added to the complexity estimates of process

segments and otherwise be ignored during optimization. Some computer components may

also depend on constant power availability. It appears that power-aware architectures tend

to arrange independent supplies in these cases so that there are better controls over resource

consumption. Thus, these concerns are peripheral to the optimizations developed herein.

The power models appearing in the optimizations developed below are denoted by Πmn.

Using the Πmn model, the energy to execute c cycles at constant voltage v is e = cvm and

the execution time is t = c/vn. Some optimizations will assume that voltage is agile, i.e.,

voltage can vary continuously. In such cases,

e =

∫ c

0

v(x)m dx t =

∫ c

0

v(x)−ndx, (1)

where v(x) is the voltage used when cycle x is executed. The Π21 model is the one most

often used [3, 16, 30, 37, 45, 48]. Lorch and Smith [29] also do basic analysis with Π21

but note that formulas developed using Π11 better fit simulation results. Shin et al [41]

also develop optimizations using Π21 but evaluate an example architecture with a Π2(.7)
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model. All optimizations blow are initially performed with the Π11 model in order to simplify

derivations. Section 4 re-presents the results using general Πmn models.

Melhem et al [32] proves, for a variety of models, that the lowest energy utilization to

execute a fixed number of cycles when there is a hard deadline is achieved by the constant

voltage solution that uses all of the available time. Ishihara and Yasuura [24] note the same

result and BÃlazewicz et al [7] note that when the rate of consumption of some resource is

a convex function of CPU speed, an ideal schedule will run each task at a constant speed.

A corollary is used below: the least time to execute a fixed number of cycles when there

is a hard energy constraint is achieved by the constant voltage solution that uses all of the

available energy.

2.2 Process Models

The unit presented for scheduling is the process. Two types of process models are defined

below. The first is the simple probabilistic model where all that is known about a process is

that its complexity is x with probability p(x). The second is the structural model where the

branching behavior and probabilities of the branches are specified. A simple probabilistic

model can be derived from structural information though there is an information loss—so

better optimizations are generally possible with the latter.

2.2.1 The Simple Probabilistic Process Model

The simple probabilistic process model is specified by a nonnegative function, p, where p(x)

is the probability that execution will terminate after exactly x cycles. Two assumptions are

made: 1) p(x) = 0 if x ≤ 0 and 2) there exists a finite c such that p(x) = 0 if x > c. In the

notation used below, c will always denote the smallest value for which
∫ c

0
p(x) dx = 1.

The function P (x) =
∫ x−
0

p(y) dy is the probability that process complexity is less than

x and z(x) =
∫ c

x
p(y) dy is the probability that the complexity is at least x. Thus, z(x) =

1 − P (x). A simple probabilistic process model will often be specified by P rather than p.

Though the information content is equivalent, the former is often more straightforward to

elicit and represent.

Both [16] and [29] introduce simple probabilistic models and find voltage schedules that

minimize expected energy consumption given a not-to-exceed deadline. The latter uses their
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results to improve performance of an existing dispatch schedule where the deadlines are

already defined. The value of using statistical information in the form of the simple model

is demonstrated by analysis and simulation [17].

2.2.2 The Structural Process Model

The structural model of a process provides details of its branching. A process is represented

by a 4-tuple, (σ, S, cx, p), where S is a set of code segments, cx(s) is the complexity measured

in cycles of each s ∈ S, and σ is the initial segment (entry point) of the process. Branch

probabilities are represented by p, where p(s1, s2) is the probability that execution of s2 will

immediately follow execution of s1. Let p(s) =
∑

r∈S p(s, r), then clearly p(s) ≤ 1 is required

for all s ∈ S. If p(s) < 1, then 1 − p(s) is the probability that an execution of s will be

process terminal. Define θ(s) to be the set of all r ∈ S such that p(s, r) > 0.

A directed graph can be used to represent a structural process model. The s ∈ S are the

nodes of the graph and there is a directed edge from each s ∈ S to each member of θ(s).

The nodes are labelled by cx(s) and the arc from s to r ∈ θ(s) is labelled with p(s, r). For

the nonce, assume that process graphs are acyclic. Methods that deal with graph cycles will

be discussed in Section 3.3 where loops are analyzed. Note, there can be multiple paths to

as well as from a segment.

Many investigators use flow-graph technology to represent processes that will be voltage

scheduled to minimize energy consumption given computational deadlines. The simplest

case is a graph where the edges represent simple order dependencies [45]. Both [32] and [41]

use graph models where probabilities annotated branches and worst- and average-case com-

plexities are calculated for the continuations starting at each node. Zhu et al [48] present a

generalization of an AND/OR model [15] where AND nodes represent parallel dispatch, OR

nodes, where synchronization is forced, represent conditional branching, and probabilities

annotate these branches. Worst- and average-case complexity statistics are used to improve

voltage schedules within an innovative slack-stealing scheme. The formalism introduced here,

like those in [32, 41, 48], has no direct method to represent common subroutines. However,

a routine graph may be macro expanded, perhaps multiple times, into the parent graph.
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2.2.3 Process Model Comparison

Consider a process with three segments. The first segment, with cx = 15, is executed then

there is a branch to one of two final segments: one with cx = 10 and the other with cx = 20.

Figure 1(a) shows the structural model of this process with the assumption that both branch
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(a) Structural model.
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(b) Simple process model.

Figure 1: The structural and simple models for the same process.

probabilities are 0.5. Figure 1(b) shows P (x) for the simple probabilistic model of the same

process. In the simple model p(25) = .5, p(35) = .5, and all other p-values are zero. The

relevant observation, in this case, is that the structural model is more informed: total process

complexity is known in the structural model at cycle 15 when the branch is selected. The

simple model only provides new complexity information at cycle 25 where the process either

halts or continues for 10 more cycles. As will be shown below, the delay in knowledge capture

increases the expected energy and time measures that we are trying to minimize.

3 Optimizations

Optimized voltage schedules are derived using simple probabilistic and structural process

models assuming the Π11 power model. The optimization results are presented for the general

Πmn model in Section 4. Table 1 summarizes the optimizations performed in this section,

where Ex(·) is the expected value operator, E is energy expenditure, and T is computation

time. Other sorts of optimization criteria have been of recent interest. One example is

reward-based scheduling [4] where core parts of processes must be scheduled. Reward values

are assigned to the unscheduled process parts and the goal of the scheduler is to maximize

its reward by scheduling these additional parts without exceeding resource limitations.

Sections 3.1.3 and 3.1.5 provide optimization examples, Section 3.2.3 describes algorithms
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Table 1: Section 3 optimization summary.

Section Model Budget Minimize

3.1.1 Simple E Ex(T )

3.1.2 Simple T Ex(E)

3.1.4 Simple — Ex(Q(E, T ))

3.2.1 Structural E Ex(T )

3.2.2 Structural T Ex(E)

to implement optimizations with structural models, and Section 3.3 discusses the modelling

and handling of loops, including cases where the number of iterations is not bounded at

compile time.

3.1 Simple Probabilistic Model Optimizations

3.1.1 Hard Energy Bound

The problem is to find the agile voltage schedule that minimizes the expected execution

time of a process given its simple probabilistic model, p, and a not-to-exceed energy budget

E. The expected execution time is
∫ c

0
z(x)/v(x) dx because z(x) is the probability that the

process will still be executing at cycle x and v(x)−1 measures the time to execute that cycle.

The energy constrain is E =
∫ c

0
v(x) dx. This problem is solved using a Lagrangian multiplier

and variational methods [9]. The objective has the form,
∫ c

0

z(x)

v(x)
dx+ λ

[
E −

∫ c

0

v(x) dx

]
,

where λ is the Lagrangian multiplier. Substitute v(x) + βg(x) for v(x), differentiate with

respect to β, let β = 0, and set the result to zero:

−
∫ c

0

g(x)z(x)

v(x)2
dx− λ

∫ c

0

g(x) dx = 0

∫ c

0

g(x)

[
z(x)

v(x)2
+ λ

]
dx = 0.

Since g(x) can be an arbitrary function, λ+ z(x)/v(x)2 = 0 is necessary. Therefore, v(x) =

kz(x)1/2 for some constant k. From E =
∫ c

0
v(x) dx, it follows that k = E/I, where I =

∫ c

0
z(x)1/2 dx. Thus, a summary of the minimization result is

v(x) =
E

I
z(x)1/2 Ex(T ) =

I2

E
Ex(E) =

E

I

∫ c

0

z(x)3/2 dx, (2)
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where Ex(T ) =
∫ c

0
z(x)/v(x) dx is the expected process execution time as noted above and

Ex(E) =
∫ c

0
z(x)v(x) dx is expected energy utilization. Note that Ex(E) ≤ E because

0 ≤ z(x) ≤ 1.

3.1.2 Hard Time Bound

The problem is to find the agile voltage schedule that minimizes the expected energy utiliza-

tion of a process given its simple probabilistic model, p, and a not-to-exceed time budget T .

The method to solve this problem is identical to the one used in Section 3.1.1. The summary

of this minimization is

v(x) =
I

Tz(x)1/2
Ex(T ) =

T

I

∫ c

0

z(x)3/2 dx Ex(E) =
I2

T
. (3)

This result, for a different power model, also appears in [16] and [29].

3.1.3 Examples for Hard Energy and Time Bounds

Actual deployment of the results developed above may require numerical methods especially

when p is a measured rather than an analytic function. The p used in the example below

was chosen so that closed-form results could easily be generated.

Let p(x) = π
2c
sin(π

c
x) when 0 ≤ x ≤ c and p(x) = 0 elsewhere be a simple probabilistic

model. In the first problem, E is a hard energy bound and in the second, T is a hard

time bound. Table 2 presents the optimal agile voltage solutions and expected resource

Table 2: Optimal solution for hard energy and time bounds.

Budget v(x) Ex(E) Ex(T )

E
πE cos

( π

2c
x
)

2c

2

3
E

4c2

π2E

T
2c

πT cos
( π

2c
x
) 4c2

π2T

2

3
T

consumptions for both problems. It is interesting to note that voltage is a decreasing function

when energy is constrained and an increasing function when time is constrained. This will

always be the case as an examination of (2) and (3) will reveal. The rising effect was
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previously noted [29] and led to an approach named Processor Acceleration to Conserve

Energy (PACE).

3.1.4 General Penalty Function

The problem is to find the agile voltage schedule that minimizes the expected value of

Q(E, T ), where Q is a penalty function and E and T are, respectively, total energy con-

sumption and total execution time, given a simple probabilistic model, p. The objective to

minimize is, thus,

Ex(Q(E, T )) =

∫ c

0

p(x)Q(E(x), T (x)) dx,

where E(x) =
∫ x

0
v(y) dy and T (x) =

∫ x

0
v(y)−1 dy. This problem is tackled by variational

methods [9] starting with the substitution v(x)+βg(x) for v(x), differentiating with respect

to β, letting β = 0, and equating the result to zero:

∫ c

0

p(x)

[
Q1

∫ x

0

g(y) dy −Q2

∫ x

0

g(y)

v(y)2
dx

]
dx = 0,

where Q1 = ∂Q/∂E and Q2 = ∂Q/∂T . Change the order of integration to produce the

equivalent ∫ c

0

g(x) dx

∫ c

x

p(y)

[
Q1 − Q2

v(x)2

]
dy = 0.

Therefore, minimizing/stationary voltage schedules must satisfy

v(x)2 =

∫ c

x
p(y)Q2 dy∫ c

x
p(y)Q1 dy

(4)

since g can be arbitrarily chosen.

Integral equations such as (4) are notoriously difficult to solve. The illustrative example

in the following section was generated to demonstrate analytic rather than numerical solution

techniques. However, some cases are straightforward. For example, there is often a constant

v that satisfies (4) if Q2/Q1 = f(E/T ) for a suitably well-behaved f and Π11 is assumed.

Let v be a constant, then

f(E/T ) = f

( ∫ x

0
v dy∫ x

0
v−1 dy

)

= f(v2),
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which is a constant. Therefore, Q2/Q1 = f(v2) and, from (4),

v2 =

∫ c

x
p(y)f(v2)Q1 dy∫ c

x
p(y)Q1 dy

= f(v2).

So the solutions of v2 = f(v2), i.e., the square root of the fixed points of f , if any,

are stationary solutions of (4). These conditions are met whenever Q(E, T ) = g(ET ) or

Q(E, T ) = g(αEr + βT r) as simple computations will show.

3.1.5 General Penalty Function Example

Let p(x) = c−1 when 0 ≤ x ≤ c and let p(x) = 0 elsewhere. Then p is a simple probabilistic

process model. Let the penalty function Q have the form Q(E, T ) = E + 3
2
c2(1 − e−2T ) so

that Q1 = 1 and Q2 = 3c2e−2T . Therefore, a stationary solution must satisfy

v(x)2 =

∫ c

x
p(y)Q2 dy∫ c

x
p(y)Q1 dy

=

∫ c

x
3ce−2T dy∫ c

x
1
c
dy

=
3c2

∫ c

x
e−2T dy

c− x
.

The above is satisfied by v(x) = c−x, where T (y) = log c
c−y

, as can be verified by substitution.

3.2 Structural Process Model Optimizations

3.2.1 Hard Energy Bound

The problem is to find a voltage schedule that minimizes expected execution time given

the structural process model, (σ, S, cx, p), and a not-to-exceed energy budget E. Define the

quantity

I(s) = cx(s) +

√ ∑

r∈θ(S)
p(s, r)I(r)2 (5)

for each s ∈ S. Note that I(s) = cx(s) when s is a terminal segment because θ(s) = ∅ and,

hence, the summation is vacuous.

It is shown here that the optimal voltage, v(s), to execute segment s and the expected

execution time for s and the remainder of the process are

v(s) =
e

I(s)
Ex(t(s)) =

I(s)2

e
, (6)
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where e is the remaining energy budget when s is executed. Thus, the minimum expected

execution time for the whole process, while honoring the energy budget, is I(σ)2/E.

The first thing to note is that each terminal segment, s, will execute with a constant

voltage because the number of cycles cx(s) and the energy budget allocation are fixed. (See

Section 2.1.) From e = cx(s)v, it follows that v = e/cx(s) = e/I(s) and from t = cx(s)/v it

follows that t = I(s)2/e; both in agreement with (6). This completes the base step for an

induction to verify (6).

Now consider a segment s where (6) describes the optimal policy for all r ∈ θ(s). Let

e be the remaining energy budget. Some of that budget, e1, will be devoted to s and the

remainder, e−e1, will be used for the rest of the process execution. Thus, the expected time

to execute s plus the remainder of the process is

Ex(t(s)) =
cx(s)

2

e1
+

∑

r∈θ(s)
p(s, r) Ex(t(r))

=
cx(s)

2

e1
+

∑

r∈θ(s)
p(s, r)

I(r)2

e− e1

=
cx(s)

2

e1
+

(I(s)− cx(s))
2

e− e1
(7)

using the inductive assumption and a constant-voltage solution for s. The minimizing value of

e1 is found by solving d Ex(t(s))
d e1

= 0 for e1. The result is e1 = cx(s)e/I(s). Since e1 = cx(s)v(s),

it follows that v(s) = e/I(s) in agreement with (6). Now substitute the optimizing value of

e1 into (7) and simplify to show that Ex(t(s)) = I(s)2/e and complete the induction.

3.2.2 Hard Time Bound

The problem is to find a voltage schedule that minimizes expected energy utilization given

the structural process model, (σ, S, cx, p), and a not-to-exceed time budget T . The method

to solve this problem is identical to the one used in Section 3.2.1. The results of this

optimization are

v(s) =
I(s)

t
Ex(e(s)) =

I(s)2

t
, (8)

where I(s) is defined by (5) and t is the remaining time budget when s is executed. The

expected energy utilization for the entire process is I(σ)2/T .
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3.2.3 Algorithms for Structural Models

The optimal policies developed for the structural process model are straightforward to im-

plement. Voltage is set when each s ∈ S begins execution as a function of I(s) and the

remainder of the budgeted resource; how control arrives at s is not relevant. Figure 2 shows

API routines that are called at the beginning of the execution of s with the parameter I(s).

procedure set voltage (I)

if e ≤ 0 then error ;

voltage ← e/I;

end set voltage

(a) Energy management API.

procedure set voltage (I)

if t ≤ 0 then error ;

voltage ← I/t;

end set voltage

(b) Time management API.

Figure 2: APIs to support structural process model execution.

The API shown in Figure 2(a) is used when energy is budgeted and e is the remaining energy

budget. Figure 2(b) shows the API when time is the constraint and t measures remaining

time. The error checks account for possible prior effects of parameter misestimations.

In order to use the optimal policy, I(s) for each s ∈ S must be available at runtime.

These values can be calculated offline and inserted, along with the API calls, by a power-

aware compiler. The total execution time to calculate all I(s) values is proportional to the

size of the graph used to represent the structural model of the process as an examination of

Figure 3 will show. The recursive algorithm is called with σ, the initial segment, and when

it completes, s.I is set for each s ∈ S. The mark fields s.mark are initially false; they are

used so that s.I is calculated exactly once for each s ∈ S.

3.3 Loops

Loop constructs are a fundamental control structure that must be accounted for by any

serious process modelling technique. The possibility of variable numbers of iterations is one

of the major contributors to nondeterminacy in process complexity. The simple probabilistic

model captures and organizes this information when p is estimated. That model is certainly

the easiest and most natural one to use when there are many loops with variable iteration

counts or elaborate control structures composed of ill-nested forms. Since many systems that

interact with the environment have such characteristics, their architects will often choose the
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function I(s segment)

declare a number ;

if ¬s.mark then {
s.mark ← true;

a ← 0;

for r ∈ θ(s) {
a ← a+ prob(s, r) ∗ I(r)2 };

s.I ← cx(s) +
√
a };

return s.I;

end I

Figure 3: Algorithm to calculate I(s) for each s ∈ S.

simple probabilistic model.

In some cases the complexity of one portion of a process is statistically dependent on

the complexity of another, e.g., the iteration counts of various loops are related. If the

dependencies are strong, multiple instances of some process portions would be necessary in

a structural model so that the branch probabilities could capture the dependencies. The

system modeler may well choose to use a simple probabilistic model rather than deal with

the additional complexity.

The structural process model also provides mechanisms to account for loops. If, for

example, the iteration count is fixed, the loop is simply unrolled. If only the maximum

count is known, the loop is still unrolled with appropriate probabilities attached to the

continuation and exit branches of each iteration.

The case where the iteration limit is unknown in advance or is difficult to calculate is

more problematic. Consider the canonical loop structure shown in Figure 4 where segment

h is the head of the loop and segment b is the body. The header enters the body with

h

	 R

r b

�

q p
1

Figure 4: Simple loop structure.

probability p and segment r, the loop exit, with probability q = 1 − p. Two equations
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immediately follow from (5):

I(h) = cx(h) +
√

pI(b)2 + qI(r)2

I(b) = cx(b) + I(h).

The simultaneous solutions for I(h) and I(b), with the assumption that p is independent of

iteration count, are

I(h) =
cx(h) + pcx(b) +

√
p(cx(h) + cx(b))2 + q2I(r)2

q

I(b) =
cx(h) + cx(b) +

√
p(cx(h) + cx(b))2 + q2I(r)2

q
.

The same technique—expand (5) for each node in the loop plexus then simultaneously solve

for the I values—can be used to calculate metrics for more complicated cases including

multiple and/or nested loops. The I values will be passed to the API (Section 3.2.3) to

control voltage settings. Later iterations will see less of the budgeted resource remaining so

the processor speed will rise or fall, appropriately, as execution continues.

Shin et al [41] require that the maximum iteration counts be known at compile time.

When a loop exits before that count is reached, the worst-case expectation for the remain-

ing process complexity is reduced. Zhu et al [48] propose a more sophisticated method of

dealing with loops. The loop is unrolled but, depending on inter-iteration dependencies, the

individual iterations can be represented as either serial or parallel tasks or some combina-

tion thereof. Probabilities are used to specify the likelihoods of actually executing each task

cluster. Neither approach deals with the case where the bound on the number of iterations

is a priori unknown.

4 Optimizations with General Power Models

The optimizations presented in Section 3 were all developed using the Π11 power model.

Below, the results of these optimizations using the general Πmn power models described in

Section 2.1 are provided. The generalized results are grouped by the process model that is

used: first the optimizations for the simple probabilistic model then those for the structural

model. The techniques to derive these more general results are virtually identical to those

assuming Π11 so they are not repeated.
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4.1 Simple Probabilistic Model and Πmn

The simple probabilistic process model posits the existence of a function p, where p(x) is

the probability that process complexity is exactly x cycles. The Πmn power model states

that E(x) =
∫ x

0
v(y)m dy and T (x) =

∫ x

0
v(y)−n dy, where E(x) is the total energy consumed

executing cycles 0 . . . x, T (x) is the total time to execute these cycles, and v(y) is the voltage

used at cycle y.

The optimization of Section 3.1.1 finds the function, v(x), that achieves the least expected

execution time given a not-to-exceed energy budget E using Π11. The results of that opti-

mization are captured in (2). When the Πmn power model is used instead, the corresponding

results are

v(x) = z(x)
1

m+n

[
E

Φ(m)

] 1
m

Ex(T ) =
Φ(m)

m+n
m

E
n
m

Ex(E) =
Φ(2m+ n)

Φ(m)
E, (2′)

where

Φ(r) =

∫ c

0

z(x)
r

m+ndx

is a non-increasing function of r.

The minimization of Section 3.1.2 is similar except that there is a not-to-exceed time

budget, T , and the objective is to minimize expected energy consumption. The results of

the optimization, corresponding to (3), using the Πmn power model are

v(x) =
1

z(x)
1

m+n

[
Φ(n)

T

] 1
n

Ex(E) =
Φ(n)

m+n
n

T
m
n

Ex(T ) =
Φ(m+ 2n)

Φ(n)
T, (3′)

where Φ is as defined above.

The optimization of Section 3.1.4 seeks to minimize the expected value of the penalty

function Q(E, T ). The condition for a stationary solution, corresponding to (4), using the

Πmn power model, is

v(x)m+n =
n
∫ c

x
p(y)Q2(y) dy

m
∫ c

x
p(y)Q1(y) dy

. (4′)

Energy delay metrics of the form Q(E, T ) = EαT β, often used to measure architecture

efficiency [25, 31, 49], are anomalous when used as an application metric. When one checks

for a constant voltage stationary solution using that formula, v terms cancel and mα = nβ

is the residual. When the equality is true, any constant voltage produces the same expected

value of Q; when the equality is false, either the maximum or minimum possible voltage will

minimize Q.
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4.2 Structural Process Model and Πmn

Section 3.2 developed optimizations given a (σ, S, cx, p) structural process model using the

Π11 power model. This section presents the results of those optimizations when an arbitrary

Πmn power model is used instead.

Section 3.2.1 finds the optimal voltage to use for each s ∈ S and the expected execution

time when there is a not-to-exceed energy budget. The results analogous to (6) when the

Πmn power model is used are

v(s) =

[
e

I(s)

] 1
m

Ex(t(s)) =
I(s)

m+n
m

e
n
m

(6′)

where e is the energy remaining when s is executed and

I(s) = cx(s) +
( ∑

r∈θ(s)
p(s, r)I(r)

m+n
m

) m
m+n

. (9)

Section 3.2.2 finds the optimal voltage to use for each s ∈ S and the expected energy

utilization when there is a not-to-exceed time budget. The results analogous to (8) when

the Πmn power is used are

v(s) =

[
I(s)

t

] 1
n

Ex(e(s)) =
I(s)

m+n
n

t
m
n

(8′)

where t is the time remaining when s is executed and

I(s) = cx(s) +
( ∑

r∈θ(s)
p(s, r)I(r)

m+n
n

) n
m+n

.

Note that forms such as (
∑

αix
r
i )

1/r are known as general weighted (or Hölder) means and

are increasing functions of r [19].

5 Metric Estimates and Deployment

Implementing the optimizations developed above requires metrics about the hardware plat-

form to determine the proper power model to use and metrics about the application to model

it and compute an optimal voltage schedule. Hardware performance metrics and tradeoffs

are typically documented by chip vendors and can be supplemented with simulation and

testing.
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Information about applications is more specific and must be developed on a case-by-case

basis. Pouwelse and Langendoen [37] argues that voltage scaling can only be effective when

applications cooperate and Barnett [5] describes how applications form energy-related trade-

offs to measure and enhance system performance. Sources of applications metrics include

developer intuition and domain knowledge, simulation, profiling, and feedback from the ex-

ecuting systems. Section 6 discusses the impact of errors in estimating these metrics. The

remainder of this section briefly discusses methods to collect application-specific information

and embed it in a system.

The most straightforward way to predict the execution time of a task is to gather ex-

ecution times of previous instances of the same task [26]. For example, [48] assumes that

probabilities and complexities not known a priori are determined by profiling. Lorch and

Smith [29] discuss and analysis sophisticated methods to gather probabilities for the simple

process model. The tradeoffs of using recent versus long-term statistics are explored along

with how best to model the data collected, i.e., for what sort of distribution—normal, Pareto,

etc.—should the parameters be estimated. It is argued that the goal of data collection and

deployment is primarily to optimize system performance, not necessarily to capture the best

representation of the distribution. The fact that the probabilities may not be stationary

and could change over time as well as the difficulties of estimating meta-distributions are

also noted. Gruian [17] analyzes performance differences between using a priori probability

estimates offline and dynamically deriving estimates online and establishes guidelines for

when one scheme works better than the other. Barnett [6] discusses the value and costs of

using meta-distributions at compile and runtime in a general problem-solving context.

Once the application metrics have been gathered and the proper power model selected,

there remains the problem of inserting power management points in the application. De-

signing, developing, and maintaining realtime code or any code that directly interacts with

hardware devices are expensive error-prone activities [8]. Thus, approaches that shield the

majority of the developers from the details of power and time management are needed to

reduce costs and implement more robust power-aware systems. There are many approaches

to technology insertion.

Some methods do optimizations and insertion offline [46] or place the entire burden

for power management, online, in the operating system [16] or the scheduler [29]. Other

approaches rely on power-aware compilers [17, 27, 34, 41] which certainly seems best when
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feasible. Many compilers already use hardware models to count cycles and are aware, through

dataflow analysis, of when future branch decisions are actually determined. This enables use

of information about future process complexity as early as possible. Section 6.2 estimates

the value of using such information promptly and the cost if there is a delay. It should

also be possible to form power-aware versions of programming languages where pragmas are

used to specify crucial application characteristics such as branch probabilities and sources

of energy and time budget computations.

Assuming the power management mechanism is not buried beneath the application, the

developers must still decide how often and where power management points appear in code,

e.g, as calls on a power management API. (See Section 3.2.3.) The simplest approach is

to adjust voltage at the release of each code segment or task [3, 16, 30, 41, 45, 48]. Lorch

and Smith [29] discuss methods to break a task into chunks—each initiated by a separate

power management point—using the simple probability model function, p, to guide the

segmentation. It is noted that breaking tasks into ten segments, each scheduled at a constant

voltage, is sufficient to get within 1.2% of an optimal energy solution where agile voltage

control is assumed. Since it is not possible to vary voltage continuously or even for each

cycle without incurring substantial overhead, methods such as these are extremely valuable.

It is also straightforward to replace the integrals in (1) with summations over segments and

optimize accordingly [16, 29]. Whatever strategy is used to place power management points

in code, automated or semiautomated tools should be considered to easy the burden on

application developers.

6 Analysis of Results

The formulas derived for optimal voltage scheduling are analyzed in this section. Section 6.1

compares the behavior of optimal schedules with schedules derived by considering average-

case behavior. Section 6.2 analyzes the benefits of using information about future complexity

promptly. Section 6.3 analyzes the impact on optimal performance when model parameters

are misestimated. Finally, Section 6.4 develops theoretical criteria for when voltages change

in an optimal schedule and when they should remain constant.
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6.1 Estimates are Conservative

Figures 5(a) and 5(b) show, respectively, a simple probabilistic model represented by P (x) =
∫ x

0
p(y) dy and a structural model for the same process. That process consists of the segments

P (x) =
∫

x

0
p(y) dy

0 30 80 180 200–cycles–
0

.51

.877 I

.901
1.0
I

(a) Simple probabilistic model

30

s1

-.49 50

s2

100

s3

-.25 20

s4

-.81

(b) Structural model.

s1 s2 s3 s4 max Ex

A(si) 68.734 79.050 116.200 20.000

v(si) 1.455 0.713 0.178 0.144

e(si) 43.646 35.644 17.822 2.887 100.000 63.582

t(si) 20.620 70.137 561.098 138.543 790.398 137.469

I(si) 106.300 109.000 118.000 20.000

v(si) 0.941 0.659 0.329 0.296

e(si) 28.222 32.926 32.926 5.927 100.000 48.977

t(si) 31.890 75.929 303.714 67.492 479.025 112.997

(c) Metrics for average case and optimal strategies with E = 100.

Figure 5: Comparison of average case and optimal strategies.

s1, . . . , s4. Each is executed in turn and the process may terminate after any of the segments.

Optimal scheduling is compared, using this process example, with the intuitive idea of using

average-case estimates of the remaining computation to set voltage levels [32, 48]. For

simplicity, the Π11 model is assumed.

The average expected complexity of the process starting at si is A(si) = cx(si) +

p(si, si+1)A(si+1), where A(s4) = cx(s4). If the problem were to reduce expected execu-

tion time within a total energy budget, E, the voltage used at si would be v(si) = ei/A(si),

where ei is the energy remaining just before si is executed and e1 = E. The optimal strategy

is v(si) = ei/I(si), where I(si) = cx(si) + p(si, si+1)
1/2I(si+1) and I(s4) = cx(s4). (This

is just (5) specialized to the example process.) Since A(si) < I(si) except for the trivial
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cases where p = 1 or p = 0, the voltage selected by the average-case strategy at si will be

greater given the same ei. However, the energy budget remaining if si+1 is executed will be

less. Thus one may be motivated to describe the optimal strategy as conservative in that

it reserves more energy for future contingent executions. Note that 1) these observations

follow from (9) so are valid for all power models and 2) A(si) < I(si) remains valid for more

complicated structural models too.

Figure 5(c) shows metrics associated with the execution of each si as well as the expected

total execution time and energy expenditure. The rows labelled e(si) and t(si) report, re-

spectively, the energy needed to execute si and the time it would take. Maximum expected

total energy and time appear in the columns labelled, respectively, max and Ex. The max-

imum energy used by both strategies is E = 100 when all segments execute. However, the

expected energy expenditure is 23.0% less if the optimal strategy is used. When delays are

compared, the optimal strategy reduces the maximum execution time by 39.4% and the

expected execution time by 17.8%.

6.2 Promptness is a Virtue

It was noted in Section 2.2.3 that the structural model generally provides more informa-

tion than a simple probabilistic model for the same process. The reason stated was that

information about future behavior would be available sooner so that more informed voltage

scheduling decisions could be made. An example is used to illustrate the value of prompt

information deployment.

Consider a process whose initial segment complexity is 2a with a second segment of

complexity ra executed with probability p. The expected time to execute this process,

assuming the Π11 model, is I2/E, where I = 2a + p1/2ra and E is the total energy budget.

What is the effect if the decision to execute the second segment or terminate were known

after a cycles? In this case, a more informed model would posit an initial segment of

complexity a with a branch to one of two final segments: one segment, with complexity

a + ra, would be executed with probability p and the second, with complexity a, would be

executed with probability q = 1 − p. Here, the expected process execution time is J2/E,

where J = a + (p(a + ra)2 + qa2)1/2. It is easy to show that J < I unless p = 0, p = 1, or

r = 0.

The question is what fraction of the expected execution time does early information
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availability and use save? The fraction of time saved is simply

I2/E − J2/E

I2/E
= 1−

(
1 +

√
p(1 + r)2 + q

2 +
√
p r

)2

.

Figure 6 shows this fraction for several values of p as a function of r. The maximum potential

savings increase as p becomes smaller, however, the r where the maximum occurs becomes
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Figure 6: Fraction of execution time saved by prompt information use.

larger. The reason is that extra energy is committed to the second a-cycle segment, but in

the rare case where the segment of complexity ra is executed, the penalty is rather large.

Similar findings follow when general Πmn models are used and when time rather than energy

is budgeted. The minimization process is accelerated when new information is used promptly.

While it may be difficult to manually optimize code to use information as soon as possible,

it is the sort of task that could be performed by a power-aware compiler through dataflow

and branch analysis.

Gruian [17] notes that in principle it is good to execute segments with the largest un-

certainties earliest. This insight means that the code segments with the largest complexity

variance, as determined by its distribution, should be executed first when execution order

is optional. The concept of generating and using information as soon as possible to reduce

expected costs is in agreement with the analysis herein.

6.3 Robustness of Results

Estimates of various probabilities and execution complexity are based on approximate mod-

els and limited testing so might not be exact. (See Section 5.) Further, the Πmn power
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models ignore threshold voltage, dynamic states of caches and pipelines, and environmental

influences all of which effect the energy vs time tradeoff. This section investigates some

of these sources of inaccuracies and their impacts on claims of optimality for the voltage

scheduling techniques developed above. While these techniques will be shown to be robust,

one must always be cautious when applying theory to practical cases that are not exactly

modelled. The Π11 model will be used to simplify the analyses but note that the form of the

results and qualitative assertions carry over to the general case.

6.3.1 Simple Distribution Estimation Errors

Assume that p(x) is an accurate simple probabilistic model and a fixed energy budget E is

given. Then from (2), we know that Ex(T ) = I2/E and Ex(E) = E
∫ c

0
z(x)2/3dx/I. The issue

to be investigated here is the effect on Ex(T ) and Ex(E) if some p1 6= p were used, instead of

p, to determine the voltage schedule. That voltage schedule would be v1(x) = Ez1(x)
1/2/I1,

where z1(x) = 1 − ∫ x

0
p1(y) dy and I1 =

∫ c

0
z1(x)

1/2dx. Therefore, the expected resource

utilizations are

Ex(E1) =

∫ c

0

z(x)v1(x) dx Ex(T1) =

∫ c

0

z(x)/v1(x) dx

=
E

I1

∫ c

0

z(x)z1(x)
1/2 =

I1
E

∫ c

0

z(x)

z1(x)1/2
dx

and the measures we seek are

Er(E) =
Ex(E1)− Ex(E)

Ex(E)
Er(T ) =

Ex(T1)− Ex(T )

Ex(T )
,

which are the fractions of expected additional energy and time consumed if p1 is used in-

stead of the true density function p. Of course these measures can be large if p and p1 are

substantially different.

If p and p1 are reasonably alike, e.g., if it is assumed that 1) I = I1, 2) |z1(x)1/2−z(x)1/2| <
δ, and 3) z(x)1/2/z1(x)

1/2 < 1 + ε, then bounds on Er(E) and Er(T ) are straightforward to

calculate: namely,

Er(E) <
δ Ex(c)∫ c

0
z(x)3/2dx

Er(T ) <
δ(1 + ε)c

I
,

where Ex(c) =
∫ c

0
z(x) dx is the expected process complexity. Both bounds are reasonable

small if ε and δ are small and p does not have an extremely long, low-valued tail. It is inter-

esting to compare this conclusion with the discussion in Section 6.2 of worst case behavior

exhibited in Figure 6.
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6.3.2 Structural Model Errors

Executions based on the structural process model are robust in that they optimally recover

from estimation errors. That robustness is serendipity form the API algorithm shown in

Figure 2. Even if earlier execution has been based on misestimated cx and p values, the

optimal continuation is to execute segment s with voltage e/I(s) or I(s)/t, when I(s) is

correctly estimated, because e, respectively t, is the actual remaining resource. If, however,

e, respectively t, were projected by offline analysis, the prior errors and divergence from

optimality would be exacerbated.

The remainder of this section considers the effect when a set of branch probabilities

are misestimated and the objective is to minimize expected execution time given an energy

budget. The Π11 power model will be assumed for simplicity, but note that similar results

are available for the general Πmn model and the problem where time is the constraint.

Consider the situation just before segment s is executed with remaining energy e. The

total expected remaining execution time, from (6), is Ex(T ) = I(s)2/e, where I(s) = cx(s)+ψ

and ψ =
(∑

x∈θ(s) p(s, x)I(x)
2
)1/2

. Assume that the p(s, x) are misestimated so that I1(s) =

cx(s) + ψ1 is believed instead of the true value. Thus, s will be executed with voltage

v1 = e/I1(s) and consume energy e1 = ecx(s)/I1(s) leaving energy e2 = e − e1 = eψ1/I1(s)

for the remaining execution. Executing s will take time t1 = cx(s)/v1 = cx(s)I1(s)/e.

Since the I(x), where x ∈ θ(s), are assumed correct—only the p values are suspect—the

actual expected remaining execution time is t2 = ψ2/e2 = I1(s)ψ
2/(eψ1). Therefore, the

actual expected total execution time with the false assumption is

Ex(T1) = t1 + t2

=
(cx(s)ψ1 + ψ2)(cx(s) + ψ1)

ψ1e
.

The relative loss from the false assumption is

Er(T ) =
Ex(T1)− Ex(T )

Ex(T )
.

Now define α and β such that ψ = αcx(s) and ψ1 = βcx(s) and substitute in the above to

show that

Er(T ) =
(α− β)2

β(1 + α)2
.
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The objective is to analyze Er(T ) in terms of the estimation error. Define r = α/β and

rewrite the above as

Er(T ) =
β(r − 1)2

(1 + rβ)2
.

If |r − 1| < ε, for some ε > 0,

Er(T ) <
βε2

(1 + rβ)2
≤ ε2

4r
,

where the second inequality follows because the maximum value of β/(1+ rβ)2 occurs when

β = r−1. Thus, if ε is small so is Er(T ).

6.4 When Can/Should Voltage Change?

A simple an important theoretical result follows immediately from the developments in Sec-

tion 4.1. Voltage should only change in an optimal voltage schedule when executing in a

region where the probability of termination is nonzero. Table 3 summarizes the voltage

min Ex(T ) Ex(E) Ex(Q(E, T ))

v(x) = z(x)
1

m+n

[
E

Φ(m)

] 1
m 1

z(x)
1

m+n

[
Φ(n)

T

] 1
n

[
n
∫ c

0
p(y)Q2(y) dy

m
∫ c

0
p(y)Q1(y) dy

] 1
m+n

Table 3: Summary of agile voltage scheduling results.

computations for simple probabilistic models where agile voltages—those that can change

anywhere—are considered. Assume that p(x) = 0 when x1 ≤ x ≤ x2. Then z(a) = z(b) for

any x1 ≤ a, b ≤ x2 because z(x) = 1 − ∫ x

0
p(y) dy. Therefore, the result is immediate when

the objective is to minimize Ex(E) or Ex(T ). It is also immediate when the objective is

to minimize Ex(Q) because
∫ c

a
p(y)Qidy =

∫ c

b
p(y)Qidy when p, a, and b have the assumed

properties. Another way to summarize this fact is that voltage will remain constant unless

something new is learned; what can be learned during the execution of cycle x is that the

process did or did not terminate at cycle x. Such a discrimination is only possible when

p(x) 6= 0.

Similar observations follow when optimal voltage schedules are derived using a structural

process model. Voltage never changes during the execution of a segment. However, when new

information becomes available about process complexity by choosing a branch, the voltage

level might change. So the general conclusion, using either model, is that voltage can only
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change in an optimal schedule when something new is learned about the future complexity

of the process.

7 Conclusions

The analysis and form of the optimal policies developed above show that less of the budgeted

resources—energy or time—is allocated initially than would be used if one assumed average-

case behavior for future process complexity. Such aggressive non-optimal scheduling policies

will pay a substantial penalty in instances where the process complexity is relatively large,

particularly if such cases are rare because the computation of the average does not fully

account for their nonlinear effect on expected resource utilization. The gain that aggressive

policies enjoy most of the time will be more than offset and the expected value of the

parameter to be minimized will be greater.

Adequate testing must be done to fully understand these effects when non-analytic,

heuristic optimizations are used. The test set must be large enough to include a fair share of

outliers. For example, if maximum process complexity is as much as 3σ (σ is standard devi-

ation) more than the average complexity, a thousand or more test cases would be necessary

to properly benchmark expected scheduler performance. Of course if a system will execute

only a limited number of times or the optimization objective is other than minimizing ex-

pected value of resource consumption, less exhausting testing procedures may be adequate.

The analytic results developed herein can be used to provide bounds on expected resource

consumption as well as indicate significant deviations between a proposed scheduling policy

and the optimal one. This information would be used to parametrically tune and improve

specialized scheduling methods developed for particular applications.

The optimal analytic results can also be used to estimate the value of more testing to

determine model parameters. For example, the p function of the simple probabilistic model

will usually be a discrete rather than a continuous function because limited testing data is

naturally organized into intervals and because it is rather unlikely that an exact distribution

can be inferred from the process code or limited testing. Typically, the complexity range,

0 . . . c, will be partitioned into intervals, ci . . . ci+1, and a termination probability pi estimated

for each one. The potential gain in collecting more data is approximately measured by

comparing the expected resource consumption under the assumption that the mass of pi is
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concentrated at the beginning and under the assumption it is concentrated at the end of

the interval. These extreme allocations of the probability mass represent the maximum and

minimum possible future complexities consistent with the data. If the difference is small

enough to satisfy applications desiderata, then little will be gained by further data collection

and analysis.

Discrete representation of the probability distribution endows the simple model with a

property inherent in the structural model: a collection of segments that each will execute at

a constant voltage. Constant voltage executions simplify practical problems that must be ac-

counted such as discrete voltage levels, maximum and minimum voltage levels, and resource

penalties for switching voltage level and/or clock speed. Incorporating these limitations into

scheduling disciplines will assist the architects of power-aware systems in choosing the best

size of segments and determining how much statistical testing is necessary to achieve accept-

able system performance. The results developed herein will provide theoretical boundaries

and limits on the possibilities of such efforts.
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[7] K. BÃlażewicz, E. Ecker, E. Pesch, G. Schmidt, and J. We.glarz, Scheduling Computer

and Manufacturing Processes, Springer-Verlag, Berlin, Germany, pp. 346–350, 1996.

[8] B. Bohem, E. Horowitz, R. Madachy, D. Reifer, B. Clark, B. Steece, A. Brown, S.

Chulain, C. Abts, Software Cost Estimates with COCOMO II, Prentice Hall, 2000.

[9] R. Buck, Advanced Calculus, McGraw Hill, pp. 296–298 and 375–385, 1956.

[10] T. Burd and R. Brodersen, Energy efficient CMOS microprocessor design, HICSS Con-

ference, pp. 288–297, 1995.

[11] T. Burd, T. Pering, A. Statakos, and R. Brodersen, A dynamic voltage scaled micro-

processor systems, IEEE Journal of Solid-State Circuits, 35(11), pp. 1571–1580, 2000.

[12] G. Cao, Proactive power-aware cache management for mobile computing, IEEE Trans-

actions on Computers, 51(6), pp. 608–621, 2002.

[13] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, Data driven signal processing: An

approach for energy efficient computing, ISLPED, pp. 347–352, 1996.

[14] A. Chandrakasan, S. Sheng, and R. Brodersen, Low-power CMOS digital design, IEEE

Journal of Solid-State Circuits, 27(4), pp. 473–484, 1992.

[15] D. Gillies and W. Liu, Scheduling tasks with AND/OR precedence constraints, SIAM

Journal of Computing, 24(4), pp. 797–810, 1995.

[16] F. Gruian, Hard real-time scheduling for low-energy using stochastic data and DVS

processors, ISLPED, pp. 46–51, 2001.

[17] F. Gruian, On energy reduction in hard real-time systems containing tasks with stochas-

tic execution times, IEEEWorkshop for Real-Time Embedded Systems, pp. 11–16, 2001.

[18] V. Gutnik and A. Chandrakasan, An efficient controller for variable supply voltage low

power processing, Symposium on VLSI Circuits pp. 158–159, 1996.
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