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Abstract
How should opinions of control knowledge sources be
represented and combined? These issues are addressed
for the case where control knowledge is used to form
an agenda, i.e., a proposed knowledge source execu-
tion order. A formal model is developed in the Demp-
ster/Shafer belief calculus and computational problems
are discussed as well. The model is applicable to many
other problems where it is desired to order a set of
candidates using a knowledge-based approach.

Introduction
Deciding on the order to do things is one of the most
important activities performed by an intelligent sys-
tem. These decisions influence the amount of problem-
solving resources utilized and determine the coherence
and explainability of system behavior. The decisions
are made by control knowledge and it is this knowl-
edge that is responsible for guiding a system’s search
for problem solutions.

Search is a prevalent problem-solving paradigm used
by many intelligent systems (Newell & Simon 1976).
Some relevant piece of knowledge is selected by the con-
trol knowledge and applied within the current problem-
solving state. This step can modify that state and
make different pieces of the knowledge base applica-
ble. The selection and application cycle is repeated
until the system’s termination condition is met.

Without the guidance of proper control knowledge,
search wanders aimlessly through the solution space
until either resources are exhausted or an answer is
uncovered (Pearl 1984 & Nilsson 1980). This is not ac-
ceptable in large domains because the chance of stum-
bling on a solution is very small. Also, it is unlikely
that a proposed solution could be defended: it is dif-
ficult or impossible to explain why alternative paths
were discarded or not explored at all if blind search
were substituted for the use of control knowledge.

If the resources consumed by control knowledge did
not count as part of the total problem-solving resources

used by the system, it would be optimal to determine
the piece of knowledge to apply at the beginning of
each system cycle. However, these resources do count
(Barnett 1984) and the complexity of making control
decisions can easily overwhelm many other aspects of
system behavior.

For this reason, many systems form an agenda, a
proposed order to execute or apply the relevant pieces
of knowledge. Motivation and techniques to form
agendas in rule-based systems are described by (Davis
1980a & 1980b).

Summary
A formal model is developed in the Dempster/Shafer
belief calculus (Shafer 1976) so that the opinions of
control knowledge sources can be represented and com-
bined in order to form agendas. Contradictory opin-
ions and preference cycles (loops) are dealt with in a
straightforward way.

The model is applicable to many problems where it is
desired to order a set of candidates using a knowledge-
based approach. However, for the sake of concreteness,
the discussion is presented as if the problem were that
of forming an execution-order agenda for the rule in-
stantiations in a system’s conflict set and some flexi-
bility in execution order is assumed.

The model’s objective function for agendas is Pl,
the Dempster/Shafer plausibility measure. However,
finding the agenda that maximizes Pl is equivalent to
solving the weighted feedback edge-set problem which
is known to be NP-complete.

Since the same underlying problem is likely to occur
in other formulations of weighted voting schemes, an
approximation technique is desired. An algorithm, em-
pirically shown to be reasonably accurate and efficient,
is described.

The Model
A model to represent and combine the opinions of
control knowledge sources is developed in the Demp-

In Proceedings of Ninth National Conference on Artificial Intelligence (AAAI–91) 477–481



ster/Shafer belief calculus. (The appendix provides a
brief introduction to the concepts used below.) The
calculus is well-suited to this task because opinions
about ordering are naturally expressed as preferences
for subsets of the set of the possible agendas.

In the model, primitive opinions are weighted prefer-
ences on the execution order of pairs of rule instances.
These pairwise preferences are represented by simple
support functions. Complex opinions are expressed as
sets of primitive opinions and combined with Demp-
ster’s rule.

Representing Opinions

LetR = {r1 . . . rn} be the collection of rules selected by
the retrieval and filtering mechanism of an expert sys-
tem. Define Θ as the set of possible execution agendas,
i.e., the set of permutations of R. Thus, if R = {a b c},
then Θ = {abc acb bac bca cab cba} and the problem
of picking an agenda for R is to select the best π ∈ Θ.
Therefore, opinions about ordering R are preferences
for particular elements or subsets of Θ because these
elements and subsets encode order relations among the
elements of R.

In the proposed model, a primitive opinion about
the best ordering of R is a pairwise preference written
as a→ b[w], where a and b are elements of R. This is
an opinion that a should execute before b and w ∈ [0, 1]
is the strength of that preference.

A primitive opinion is represented by a simple sup-
port function. The degree of support is w and the
focus is the subset of Θ for which the pairwise prefer-
ence holds. For example, if R = {a b c}, the opinion
a→ b[w] is represented by a simple support function
with focus {abc acb cab}.

N.B., the opinion “opposite” to a→ b[w] is b→ a[w].
Unlike certainty factors (Shortliffe 1976), negative de-
grees of support are not used; rather, support is fo-
cused on complementary propositions.

It is easy to imagine other kinds of primitive opinions
than those representable in this model, i.e., opinions
that support subsets of Θ not allowed herein. However,
as shown below, sets of pairwise preferences adequately
capture the intent of many types of opinions expressed
by control knowledge.

Combining Opinions

The Dempster/Shafer belief calculus provides Demp-
ster’s rule to combine sets of belief functions into a
single belief function. In particular, the opinions of
control knowledge sources are combined by this rule
because primitive opinions are represented by simple
support functions, a specific kind of belief function.

The Best Agenda
The Dempster/Shafer belief calculus provides decision
makers with the Bel and Pl functions. This section
shows that maximizing Pl is the better criterion to
select the best agenda because Pl is more reliable than
Bel in discriminating among alternatives.

Assume that the total set of primitive opinions ex-
pressed by the control knowledge sources is represented
by ui → vi[wi], where 1 ≤ i ≤ m. Let π ∈ Θ be an
agenda and define σi(π) to be satisfied if and only if π
is compatible with ui → vi[wi], i.e., if ui appears before
vi in π. Then Pl is computed by

Pl(π) = K
∏
¬σi(π)

(1− wi), (1)

where K is strictly positive and independent of π
(see the appendix). Thus, Pl(π) 6= 0 unless there
is a ui → vi[1], where ¬σi(π). However, the neces-
sary and sufficient condition that Bel(π) 6= 0, where
π = r1 . . . rk, is much stronger:

1. A primitive opinion, ri → ri+1[wi], where wi 6= 0,
exists for each 1 ≤ i < k.

2. No primitive opinion of the form ri → rj [1] exists for
any 1 ≤ j < i ≤ k.

Therefore, unless the set of primitive opinions is rel-
atively large, Bel will be zero for most or all of the
π ∈ Θ. In fact, if there is a r ∈ R such that no prim-
itive opinion references r, then Bel will be zero for
every agenda.

Hence, the best agenda is defined, by this model, to
be the π ∈ Θ that maximizes Pl(π) because Pl is more
stable and reliable at discriminating agenda merit than
is Bel.

Complex Opinions
The opinions of control knowledge sources are often
derived from general knowledge and knowledge of the
application rather than specific knowledge about par-
ticular rules (Davis 1980a & 1980b). For example, a
typical control rule in an investment domain is,

If the economy is fluctuating, prefer the rules that
analyze risk.

This control rule is interpreted to prefer to execute
investment rules that analyze risk before those that do
not given that the system has (can) deduce that the
economy is fluctuating. Another example of a control
rule in the same domain is,

If bonds are being considered, prefer the rules that
recommend investments with higher Standard and
Poors ratings.
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Pl(π)
π Model Simple Chunk
abc 1 1 1
acb 1− s 1− s 1− s
bac 1− s 1− s 1− s
bca (1− s)2 1− s 1− s
cab (1− s)2 1− s 1− s
cba (1− s)3 (1− s)2 1− s

Figure 1: Example with 3 interpretations.

This example references a ranking (the Standard and
Poors index) and groups some of the investment rules
(those that recommend bonds) so that the groups can
inherit the ranking. Then it prefers to execute the rules
so ranked in the specified order.

Both examples exhibit execution-order preferences
that induce partial orders on R, the domain rules. A
simple representation captures the intent of such con-
trol knowledge.

Let the Pi, where 1 ≤ i ≤ m, be predicates with
domain R and assume that the weights sij ∈ [0, 1]
are given. The partial order preference is realized
as the collection of all primitive opinions of the form
a→ b[sij ], where a, b ∈ R, Pi(a), Pj(b), and i < j.
Thus, the control knowledge source is represented by
its Pi and sij . It should be noted that the Pi may need
to access variables in the problem-solving state of the
expert system, e.g., “economy fluctuation” in the first
example in this section.

The next section presents an example and considers
alternative realizations of the execution-order prefer-
ences of control knowledge sources.

Alternative Interpretations
Let R = {a b c} and assume that a control knowledge
source prefers that execution be in alphabetically or-
der. In the notation of the previous section, a, b, and c
are the only rules that, respectively, satisfy P1, P2, and
P3. Additionally, let sab = sac = sbc = s. Thus, the
opinion of this control knowledge source is expressed
by a→ b[s], a→ c[s], and b→ c[s].

With these assumptions, Figure 1 shows the value of
Pl for each π ∈ Θ. The column labeled “Model” lists
the Pl values computed by the model. The six π ∈ Θ
split into four groups because Pl awards values that
depend on whether π agrees with 0, 1, 2, or 3 of the
primitive opinions.

An alternative realization of the complex opinion
that a, b, and c should execute in the stated order is to
combine only the two primitive opinions a→ b[s] and
b→ c[s], i.e., do not take the closure of the transitive

preference relation. This alternative results in the Pl
values shown in the figure under the heading “Simple”.

A third alternative is to form a single simple support
function that focuses only on the singleton set {abc}.
The Pl values that result are shown in the column
titled “Chunk”.

A problem with the second and third interpretations
is that they are less discriminating then the model’s.
The third alternative is the most insensitive: minor dis-
agreements such as acb, with only b and c out of order,
are awarded the same Pl value as total disagreements
such as cba where everything is backwards.

Since there can, in general, be many knowledge
sources expressing ordering opinions, it is not a good
idea to employ an all-or-nothing interpretation in do-
mains where “half a loaf is better than nothing”. The
approximation computation described below is appli-
cable with both the “Model” and the “Simple” inter-
pretations but not “Chunk” because the latter is not
based on pairwise preferences.

The Optimization Problem
Finding the best agenda means finding the π ∈ Θ that
maximizes Pl(π). This is shown to be the weighted
feedback edge-set problem which is known to be NP-
complete (Garey & Johnson 1979).

Since K in Equation 1 is strictly positive, simple
algebra demonstrates that the π ∈ Θ that minimizes

Pl′(π) =
∑
¬σi(π)

w′i, (2)

is the best agenda, i.e., the π ∈ Θ that maximizes Pl
in Equation 1. The w′i = − log(1−wi) are the weights
of evidence, in the terminology of (Shafer 1976), and
are positive because wi ∈ [0, 1]. Hence, Pl′(π) is just
a sum of a positive weight for each ui → vi[wi] that is
not compatible with π.

One would expect a similar formulation, with per-
haps different weight semantics, for any weighted pref-
erence scheme used to determine optimal agendas—
those that are incompatible with the least vote weight
are valued most.

An example is shown graphically in Figure 2. The
elements of R are the nodes and each directed labeled
arc represents a pairwise preference, e.g., the arc la-
beled w′ab directed from a to b represents a→ b[wab].
Thus, the example shows five primitive opinions that
contain a preference loop between a, b, and c formed
by the arcs labeled w′ab, w

′
bc, and w′ca.

Let π = abcd, then Pl′(π) = w′ca because the arc
directed from c to a is the only one that is inconsistent
with π. Since there is a cycle, every π ∈ Θ is penalized
by a weight on at least one of the arcs in that cycle.
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Figure 2: Example with a loop.

In the general case, every agenda is penalized by
the weight of at least one arc in each directed cycle
in the preference graph. Therefore, the best agendas
are those that are compatible with the graph that re-
mains after the least total weight has been removed
on a set of arcs that cut each directed cycle. Finding
a minimum-weight deletion is the weighted feedback
edge-set problem.

Again, consider the example with a loop shown in
Figure 2. The best you can do is to accept one of the
penalties, w′ab, w

′
bc, or w′ca. Assume that the minimum

of the three is w′ab. Then the orders bcad and bcda both
have this minimum penalty and, hence, both maximize
plausibility, i.e., both are optimal.

A graphical representation of a set of primitive opin-
ions provides a simple method to check their consis-
tency. Let R be the graph’s nodes as above. How-
ever, only include those edges that represent primitive
opinions of the form a→ b[1]. The total set of con-
trol knowledge opinions is consistent if and only if this
restricted graph is free of directed cycles.

An Approximation
Since determining the π ∈ Θ that minimizes Equa-
tion 2 is an NP-complete problem, an approximation
technique is necessary if the above model is to be used
for applications with more than a few agenda items.
Unfortunately, a search for previous work on such ap-
proximations has not been fruitful.

Therefore, several simple approximation techniques
were programmed and empirically tested, by compar-
ison to each other, and to actual optimal results for
small problems. The test cases were generated ran-
domly and exact values computed, when possible, by
exhaustive search.

Based on the empirical evidence, one algorithm ap-
pears to be efficient and accurate enough to be useful.
The core of that approximation is shown in Figure 3.
Given the n × n matrix, w′, it is possible to find and
move an element to its optimal place, relative to the
current order of π, in O(n) time, where n = |R|. Thus,
each application of step 2 and step 3 is O(n2).

PROCEDURE FIND-AGENDA(w′)
1. Set π to a random permutation of R.
2. Visit the elements of π in left-to-right

order. Move each visited element to the
position in π that minimizes Pl′(π). If
any element is moved by this step, con-
tinue with the next step. Otherwise,
halt and return π.

3. Visit the elements of π in right-to-left
order. Move each visited element to the
position in π that minimizes Pl′(π). If
any element is moved by this step, con-
tinue with the previous step. Other-
wise, halt and return π.

END FIND-GOOD-AGENDA;

Figure 3: Minimization algorithm.

Steps 2 and 3 alternate because it is usually possible
to prune a substantial part of a step 3 after a step 2
and vice versa. On the other hand, if either step is
directly repeated, pruning is not available.

Empirical testing, with n varying from 3 to 100,
showed that the entire algorithm is O(nz), where z
is between 2.6 and 3. Several cases were tested with
n = 200 and the results were compatible with this
analysis. Exponent variation does not appear to de-
pend very much on n or on the average degree of the
preference graph. Rather, it is most strongly affected
by the fraction of the total arcs that agree with the
best agendas.

This algorithm is a local optimizations that employs
a random starting point. Since different starting points
can find different local optima, it may pay to run the
algorithm several times and keep the best solution.

Empirical evidence suggests that the need for multi-
ple applications increases when a relatively large frac-
tion of the wij are zero, the distribution of non-zero
wij values is flat, and therefore, the variance between
different solutions tends to be largest. The variance in
Pl′ for different starting points was never observed to
be more than a few percent.

Replanning
Sometimes new information becomes available while an
execution agenda is being pursued. That raises ques-
tions about how to test the impact on the unexecuted
part of the current agenda and how to economically
reorder that portion if and when it seems appropriate
to do so.

The algorithm described in the previous section has
a property that makes it well-suited to address such
replanning problems: every subagenda (a contiguous
sequence) in π is a local optimum in the sense that
it cannot be improved by moving any single element
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within that subagenda. In particular, the unexecuted
portion of π, a tail sequence, is a local optimum unless
some w′ij changes, where both ri and rj are in the tail
of π.

If a change in opinions affecting rules that have not
been executed occurs, a modification of the algorithm
shown in Figure 3 is used. The changes are to restrict
w′ to the tail and not execute step 1. In other words,
start with an agenda that is probably close to reason-
able rather than start from a random point.

The full algorithm with multiple starting points only
needs to be considered if there is substantial change
in the value of Pl′ calculated for the tail. Empirical
testing shows that this type of replanning, where only
a few opinions change, is very economical. Typically,
steps 2 and 3 do not iterative—one or two applications
are sufficient.

It is possible to add new candidates to the tail of π
or remove some that no longer belong in the conflict
set. In these cases, simply place the new candidates
at the end of π, appropriately grow and/or restrict
w′ to reflect the actual slate of candidates in the tail,
and rerun the algorithm using the modified π as the
starting point.

In all of these cases, the approximation algorithm
commends itself as a diagnostic to determine the prob-
able impact of the changed opinions. In addition, it
can do the full replanning when it is appropriate to do
so. The fact that subagendas of locally optimal agen-
das are themselves locally optimal, provides a measure
of stability.

Discussion

The model developed here appears to have sufficient
generality to solve ordering problems in many domains.
Its use of the Dempster/Shafer belief calculus makes
the formulation straightforward because (1) it is de-
sired to invest belief in subsets of the possible agendas
and (2) the simple support functions provided by the
calculus make it easy to do so.

Finding the best agenda, as defined above, is an NP-
complete problem. However, the availability of a rea-
sonably efficient and accurate approximation partially
mitigates this fact. Further, the underlying computa-
tion just determines the agenda that is incompatible
with the least vote weight, an idea that seems to be
very natural.
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Appendix: The Belief Calculus
This is a brief introduction to the Dempster/Shafer
Belief Calculus. The interested reader is referred to
(Shafer 1976) for more detailed explanations of the
concepts that are involved.

Let Θ be a set of mutually exclusive and exhaustive
possibilities and interpret the subsets of Θ as disjunc-
tions of their elements. The function, m : 2Θ → [0, 1],
is called a basic probability assignment or mass func-
tion if m(∅) = 0 and∑

S⊆Θ

m(S) = 1.

In the Dempster/Shafer belief calculus, m plays a role
similar to a density function in ordinary probability
theory. The difference is that the domain is 2Θ, the
subsets of Θ, rather than its elements.

The belief function, Bel : 2Θ → [0, 1], and the plau-
sibility function, Pl : 2Θ → [0, 1], are defined to play
roles similar to distribution functions.

Bel(S) =
∑
T⊆S

m(T )

Pl(S) = 1−Bel(¬S)

=
∑

T∩S 6=∅

m(T )

Thus, Bel(S) ≤ Pl(S) for all S ⊆ Θ and, therefore,
Bel and Pl are sometimes referred to, respectively, as
the lower and upper probability measures. Both are
available to decision makers.

The calculus provides Dempster’s rule to combine
several belief functions into one. Let m1 . . .mn be the
mass functions associated with n belief functions, then
Dempster’s rule defines, m, the mass function for their
combination to be m(∅) = 0 and

m(S) = K ×
∑

S1∩...∩Sn=S

∏
1≤i≤n

m(Si)

K−1 =
∑

S1∩...∩Sn 6=∅

∏
1≤i≤n

m(Si),

for nonempty S ⊆ Θ. This combination is defined
whenever K is.

A simple support function is a belief function for
which there is at most one S 6= Θ such that m(S) 6= 0.
The trivial simple support function is the one where
m(Θ) = 1 and m(S) = 0 for all S 6= Θ.

Other simple support functions are parameterized
by a F ⊂ Θ and a w ∈ (0, 1], where m(F ) = w and
m(Θ) = 1−w. The subset F is called the focus of the
simple support function and w is called its degree of
support.
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A simple support function is a mechanism to place
committed belief on the single hypothesis represented
by its focus. The remaining weight, placed directly on
Θ, is uncommitted since Θ represents the universally
true proposition.

Let Dempster’s rule be used to combine the n sim-
ple support functions with the foci Fi and degrees of
support si. Then (Barnett 1991) shows that

Pl(π) = K ×
∏

1≤i≤n
π 6∈Fi

(1− si),

for the combined belief function. This formula is the
justification for Equation 1 above.
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