PRIORITY IS A LIMITED PROPERTY™

Jeffrey A. Barnett
USC Information Sciences Institute

Alvin S. Cooperband
American Data Products Corp.

A system contains several processes with different priorities. All are in the
wait queue for the same semaphore and each has the form

WHILE TRUE DO
BEGIN WAIT(S);

SIGNAL(S);
END;
What happens when the semaphore S is signalled? If you thought the highest

priority process runs continuously to the exclusion of all others, then you
made a bad guess. Consider this program written in UCSD PASCAL.

PROGRAM M;
VAR S:SEMAPHORE;
K:INTEGER;

Q:PROCESSID;
PROCESS P(I:INTEGER);
BEGIN WHILE TRUE DO

BEGIN WAIT(S)

WRITE(I);
SIGNAL(S);
END;
END;

*This paper originally appeared in Operating Systems Review 17(3), (1983).

BEGIN SEMINIT(S.0);
FOR K:=1 TO 5 DO
START(P(K) ,Q, 300, 200+K) ;
SIGNAL(S);
END.

The main program starts processes 1...5 with respective increasing priorities
201...205. (The processes are named by the number they output.) All are in
the wait queue of S after execution of the for loop. When the main program
signals S, the output produced is

54535452545354515453
54525453545555.

Notice that the processes (printing) 1...4 run respectively 1, 2, 4, and 8
times before process 5 takes over the CPU.

To see why the highest priority process does not immediately seize com-
plete control, three things must be understood. First, there are two process
queues — RUN_QUE and S.QUE, the queue associated with semaphore S. Each
queue is ordered so that processes with higher priorities come first. Second,
when a semaphore is signalled, the highest priority process (if any) in the
associated queue is moved to RUN_QUE. Third, the first process in RUN_QUE is
the process that is executing.

Now consider the sample program. When the main program, M, signals S,
RUN_QUE is [M] and S.QUE is [6 4 3 2 1]. Just after the signal, the queues
are [5 M] and [4 3 2 1]. Process 5 runs and prints ”5” then signals S. Since
5 is not now in S.QUE, it cannot consume the semaphore. Rather, 4 does and
the resulting queues are [6 4 M] and [3 2 1]. Process 5 continues execution
with its wait statement, but there is no way for it to proceed beyond that
point because S.COUNT = 0. Therefore, the queues become [4 m] and [5 3
2 1], and process 4 is run.

Similar reasoning applies through execution of the first 30 write state-
ments when the queues become [5 4 3 2 1 M] and [], i.e., all process are
in RUN_QUE. Thereafter, the highest priority process,5, just continues because
there is no other process in S.QUE to consume the semaphore when it signals.

		2002-03-09T09:49:35-0800
	Culver City
	Jeffrey A. Barnett
	I am the author of this document

