
PRIORITY IS A LIMITED PROPERTY∗

Jeffrey A. Barnett
USC Information Sciences Institute

Alvin S. Cooperband
American Data Products Corp.

A system contains several processes with different priorities. All are in the
wait queue for the same semaphore and each has the form

WHILE TRUE DO
BEGIN WAIT(S);

. . .
SIGNAL(S);

END;

What happens when the semaphore S is signalled? If you thought the highest
priority process runs continuously to the exclusion of all others, then you
made a bad guess. Consider this program written in UCSD PASCAL.

PROGRAM M;
VAR S:SEMAPHORE;

K:INTEGER;
Q:PROCESSID;

PROCESS P(I:INTEGER);
BEGIN WHILE TRUE DO

BEGIN WAIT(S)
WRITE(I);
SIGNAL(S);

END;
END;

∗This paper originally appeared in Operating Systems Review 17(3), (1983).

1

BEGIN SEMINIT(S.0);
FOR K:=l TO 5 DO

START(P(K),Q,300,200+K);
SIGNAL(S);

END.

The main program starts processes 1 . . . 5 with respective increasing priorities
201 . . . 205. (The processes are named by the number they output.) All are in
the wait queue of S after execution of the for loop. When the main program
signals S, the output produced is

54535452545354515453
54525453545555......

Notice that the processes (printing) 1 . . . 4 run respectively 1, 2, 4, and 8
times before process 5 takes over the CPU.

To see why the highest priority process does not immediately seize com-
plete control, three things must be understood. First, there are two process
queues — RUN QUE and S.QUE, the queue associated with semaphore S. Each
queue is ordered so that processes with higher priorities come first. Second,
when a semaphore is signalled, the highest priority process (if any) in the
associated queue is moved to RUN QUE. Third, the first process in RUN QUE is
the process that is executing.

Now consider the sample program. When the main program, M, signals S,
RUN QUE is [M] and S.QUE is [5 4 3 2 1]. Just after the signal, the queues
are [5 M] and [4 3 2 1]. Process 5 runs and prints ”5” then signals S. Since
5 is not now in S.QUE, it cannot consume the semaphore. Rather, 4 does and
the resulting queues are [5 4 M] and [3 2 1]. Process 5 continues execution
with its wait statement, but there is no way for it to proceed beyond that
point because S.COUNT = 0. Therefore, the queues become [4 m] and [5 3
2 1], and process 4 is run.

Similar reasoning applies through execution of the first 30 write state-
ments when the queues become [5 4 3 2 1 M] and [], i.e., all process are
in RUN QUE. Thereafter, the highest priority process,5, just continues because
there is no other process in S.QUE to consume the semaphore when it signals.

2

		2002-03-09T09:49:35-0800
	Culver City
	Jeffrey A. Barnett
	I am the author of this document

