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Abstract

A sufficient condition is developed for the equality of the plausibil-
ity and commonality measures of the Dempster-Shafer belief calcu-
lus. When the condition is met, as it is in many applications, an
efficient method to calculate relative plausibility is available. In par-
ticular, the method can be used to calculate the relative plausibility
of atomic hypotheses and, therefore, it can be used to find the choice
that maximizes this measure. The computation is efficient enough
to make Dempster-Shafer practical in some domains where computa-
tional complexity would otherwise counter-indicate its use.

1 Summary

The Dempster-Shafer belief calculus [7] is a theory of plausible reasoning

because it provides methods to represent and combine weights of evidence.

The measures Bel and Pl are used to assist decision making and play roles

similar to that played by distribution functions in probability theory.

Bel is called a belief or lower probability function and Pl is called a

plausibility or upper probability function. Bel is often 0 on all or most of

the atomic hypotheses in complex domains unless a large number of evidence
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sources are available. However, Pl generally provides some discrimination

even when the evidence is sparse. Therefore, Pl is a more robust guide to

decision making than is Bel.

Bel and Pl computations can be prohibitively expensive unless assump-

tions about the structure of the evidence are available. Orponen [4] shows

that these computations are #P-complete when evidence sources are com-

bined. Shafer and Logan [6] and Gordon and Shortliffe [2] develop efficient

algorithms for cases where bodies of evidence illuminate hypotheses that can

be arranged in strict hierarchies; and Barnett [1] deals only with cases where

bodies of evidence focus on atomic hypotheses and their complements.

In the following, an efficient method is developed to find values of Pl(θ)

up to a multiplicative constant. This method relies only on the assumption

that θ be an hypothesis that is atomic with respect to the evidence, a concept

made precise below. In particular, the method can be used with the atomic

hypotheses of any domain and, therefore, it can find the choice maximizing

Pl.

Basic concepts and notations of the Dempster-Shafer theory are intro-

duced in the next section. That material can be skipped by readers familiar

with Shafer’s book [7]. Subsequent sections develop methods to efficiently

compute values proportional to Pl.

2 The Dempster-Shafer Theory

The basic concepts and mechanisms of the Dempster-Shafer theory are intro-

duced in this section. The introduction parallels Shafer [7]. The interested

reader is referred to Hummel and Landy [3] and Schocken and Kleindorfer [5]
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for additional discussion and alternative interpretations of the theory.

2.1 Representing Evidence

The Dempster-Shafer theory represents a problem domain by a set, Θ, of

mutually exclusive and exhaustive atomic hypotheses. A subset of Θ is in-

terpreted as the disjunction of its elements. If the function m: 2Θ → [0, 1]

satisfies m(∅) = 0 and

∑
S⊆Θ

m(S) = 1,

then m is called a basic probability assignment over Θ. One can imagine that

a mass of weight m(S) is attached to each S ⊆ Θ and that it is free to move

anywhere in S. The weight of the mass stands for the strength of our belief

in the proposition that S represents.

The function, Bel: 2Θ → [0, 1], is derived, from the basic probability

assignment m, by

Bel(θ) =
∑
S⊆θ

m(S),

for all θ ⊆ Θ. This Bel is called the belief function. Another function,

Pl: 2Θ → [0, 1], is defined by Pl(θ) = 1−Bel(θ), where θ is the complement

of θ, i.e., θ = Θ− θ, and Pl is called the plausibility function. Thus,

Pl(θ) =
∑

S∩θ ̸=∅
m(S).(1)

Therefore, Bel(θ) measures the total mass that is constrained to move within

θ while Pl(θ) measures the total mass that can visit somewhere within θ but

may move outside as well. Obviously, Bel(θ) ≤ Pl(θ) for all θ ⊆ Θ and,
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hence, Bel and Pl are sometimes referred to, respectively, as the lower and

upper probability measures.

The function, Q: 2Θ → [0, 1], defined by

Q(θ) =
∑

θ⊆S⊆Θ

m(S),(2)

for all θ ⊆ Θ, is called the commonality function. Thus, Q(θ) measures the

total mass that is free to move to every element of θ.

The mass movement metaphor makes it easy to see that Q is a decreasing

function while Pl and Bel are both increasing: if S ⊆ T , then Q(S) ≥ Q(T )

but Pl(S) ≤ Pl(T ) and Bel(S) ≤ Bel(T ).

The function, m, is akin to the density function of standard probabil-

ity theory. The difference is that masses must be attached to singleton sets

and, hence, have no freedom of motion. Therefore, Dempster-Shafer pro-

vides a generalization that is useful to represent the uncertainty that results

from lack of specificity, i.e., belief can be invested in disjunctive proposi-

tions without splitting that belief among the atomic elements comprising the

disjunction.

Both Bel and Pl play roles similar to distribution functions in the stan-

dard theory. There is no analogy to Q and it is generally used as a technical

device to simplify proofs of computational theorems.

Shafer [7] shows that, given any one of m, Q, Pl, or Bel, the other three

can be calculated: Formula 2 defines Q in terms of m and

Pl(θ) =
∑
S⊆θ
S ̸=∅

(−1)|S|+1Q(S)(3)

recovers Pl from Q. Further, the fact that Bel(θ) = 1−Pl(θ) follows directly
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from the definition of Pl and

m(θ) =
∑
S⊆θ

(−1)|θ−S|Bel(S)

recoversm fromBel. Therefore, the cycle fromm toQ toPl toBel and back

to m is complete and, therefore, there is a 1-to-1 correspondence between

members of the four function families.

A notational convention is used where functions with the same subscript

represent the same underlying evidence, e.g., mi, Qi, Pli, and Beli all are

defined in terms of one another. Further, a body of evidence in any of the

four forms may be called a belief function since Bel is uniquely determined

and can be recovered.

2.2 Combining Evidence

A theory of plausible reasoning must provide a method to combine bodies

of evidence in addition to ways to represent them. In the Dempster-Shafer

theory, this role is played by Dempster’s rule of combination which is also

called the orthogonal sum. If the mi, for 1 ≤ i ≤ m, are basic probability

assignments, their orthogonal sum, m, satisfies m(∅) = 0 and, for all non-

empty θ ⊆ Θ,

m(θ) = K
∑

S1,...,Sm∩
Si=θ

∏
1≤i≤m

mi(Si),(4)

where

K =

( ∑
S1,...,Sm∩

Si ̸=∅

∏
1≤i≤m

mi(Si)

)−1

.(5)

The orthogonal sum does not exist when the combined belief function at-

taches a zero-weight mass to every set. In this case, the separate bodies of
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evidence are said to be totally or flatly contradictory and it is not possible

to combine them. When the evidence is combinable, i.e., K exists, the or-

thogonal sum can be shown to be a belief function. That belief function is

calculated by

Q(θ) = K
∏

1≤i≤m

Qi(θ).(6)

This alternative form of Dempster’s rule is used below. N.B., In general, a

computation that is exponential in |Θ| may result if formula 3 is composed

with formula 6 to calculate Pl.

When the mi are combinable, the notation m = m1 ⊕ · · · ⊕mm is used

for the orthogonal sum. The ⊕ operator is commutative and associative. It

also has an identity element, a basic probability assignment that attaches a

mass of 1 to Θ and a mass of 0 to every proper subset of Θ.

2.3 Focal Element

The formulas above involving basic probability assignments can be rewritten,

without effect, to restrict summations to only those sets for which m(S) ̸= 0

(or mi(Si) ̸= 0). That motivates defining Fi = {F | mi(F ) ̸= 0 } and calling

its elements focal elements of the belief function mi. The set

C =
∩

1≤i≤m

∪
F∈Fi

F,(7)

is the core of the combined belief function. It is empty if and only if K

(formula 5) does not exist, in which case the mi are flatly contradictory.
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3 Decision-Making With Pl

The typical problem-solving scenario using the Dempster-Shafer belief cal-

culus is to gather bodies of evidence and represent them as belief functions,

combine these belief functions with Dempster’s rule, and then select the

hypothesis best supported by the combined evidence—Bel and Pl are the

measures provided by the theory to make the selection. Henceforth, the mi

are the bodies of evidence and m = m1 ⊕ · · · ⊕mm is their combination.

If h ∈ Θ, then Bel({h}) = m({h}) and formula 4 shows that m({h}) = 0

unless there exist a Fi ∈ Fi, for each 1 ≤ i ≤ m, such that ∩Fi = {h}. Thus,

the possibility that Bel({h}) ̸= 0 increases when (1) the evidence bodies are

rich—the cardinality of the Fi are large and/or (2) the number of evidence

sources is large. The evidence must become richer and/or more plentiful as

|Θ| increases, which rarely happens, or Bel({h}) = 0 for most h ∈ Θ.

Pl is not trivially zero as often as Bel because Pl(θ) ̸= 0 if and only

if θ ∩ C ̸= ∅ and, therefore, Pl({h}) ̸= 0 for all h ∈ C. However, h ∈ C is

necessary but not sufficient to show that Bel({h}) ̸= 0. Thus, Pl is generally

a more discriminating measure than is Bel to determine problem solution.

Another pragmatic reason to consider Pl for decision making is compu-

tational complexity. Unless the evidence has a special structure that can

be exploited, finding the h ∈ Θ that maximizes Bel({h}) necessitates doing

O(
∏ |Fi|) operations. On the other hand, the results developed below find

the h ∈ Θ that maximizes Pl({h}) with O(|Θ| ·∑ |Fi|) operations and this

is often a considerable improvement.
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4 Atomic Hypotheses

Let E = {mi | 1 ≤ i ≤ m } be the evidence available to be combined. Define

the predicate AtE(θ) to be true if and only if (1) θ ̸= ∅ and (2) for all F ∈ Fi,

where 1 ≤ i ≤ m, either θ ⊆ F or θ ∩F = ∅. When AtE(θ), we will say that

θ is atomic with respect to the evidence, E .

As an example, let Θ = {abcde} and assume that the focal elements of m1

are {ab} and {abc} and the focal elements of m2 are {ce} and {abcde}. Then

E = {m1 m2}, and {a}, {b}, {c}, {d}, {e}, and {ab} are the only subsets

of Θ that are atomic with respect to E . Atoms, (elements of Θ), as in this

example, are always atomic with respect to the evidence.

Lemma 1 AtE({h}) for all h ∈ Θ.

Proof: This is true because a set that has only one element is either a

subset of or disjoint from any other set. Since the F ∈ Fi are sets, the

lemma follows from the definition of AtE .2

Therefore, atomic hypotheses are always atomic with respect to the ev-

idence; no additional assumptions about the structure of E are necessary.

The theorem to be proved below is that Pl(θ) = Q(θ) when AtE(θ) and,

consequently, an efficient polynomial-time version of formula 6 can be used

to calculate relative values of Pl.

The idea behind calling a hypothesis atomic is that it be minimal in some

theory-related way. For example, Tarski [8] defines the atoms of a boolean

algebra to be minimal in the sense that if a is atomic, no hypotheses except

∅ and a, imply it. He then shows that a is atomic if and only if a has the

property that for any element, b, of the algebra, either a implies b or a implies

¬b.
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In the current investigation, with subsets of Θ interpreted as disjunctions

of their elements, it is easy to see that AtE(θ) if and only if θ |= F or

θ |= ¬F , where F is any focal element of any member of E , because θ |= F

corresponds to θ ⊆ F and θ |= ¬F corresponds to θ ∩ F = ∅ which implies

that θ ⊆ F . However, the concept of atomic with respect to the evidence

includes hypotheses that can be interpreted as disjunctions while Tarski’s

idea of atomic does not.

Lemma 2 If AtE(θ)and non-empty S ⊆ θ, then AtE(S).

Proof: AtE(θ) means that either θ ⊆ F or θ ∩ F = ∅, where F is an

arbitrary focal element of some mi. But S ⊆ θ implies that, respectively,

S ⊆ F or S ∩ F ̸= ∅ (because S ̸= ∅) and, therefore, AtE(S).2

Below it is shown that Pl(S) = Pl(θ) when S ⊆ θ and AtE(θ). Thus,

“AtE(θ)” means that the available evidence cannot distinguish the hypothesis

θ, via Pl, from the sharper ones that imply it.

Before passing on to the derivation of the main results, note that the

predicate AtE depends on E , not just the orthogonal sum of its elements.

Let E = {mi | 1 ≤ i ≤ m }, m = m1 ⊕ · · · ⊕ mm, and M = {m}.

It is straightforward to show that Pl(θ) = Q(θ) if and only if AtM(θ).

Further, AtE(θ) implies AtM(θ) but, in general, the converse is not true

unless Pl(θ) = 0.

5 Pl Theorems

The computations developed in this section find values of Pl up to a mul-

tiplicative constant. The main idea is to show that Pl(θ) = Q(θ) for many
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interesting θ ⊆ Θ. When this is possible, values proportional to Pl can be

calculated by an elaboration of formula 6 that ignores K. Thus, if θ ⊆ Θ is

one of the sets for which this technique works,

Pl(θ) = Q(θ)

= K ×
∏

1≤i≤m

Qi(θ)

∝
∏

1≤i≤m

Qi(θ)

∝
∏

1≤i≤m

∑
θ⊆S⊆Θ

mi(S)

∝
∏

1≤i≤m

∑
F∈Fi
θ⊆F

mi(F )(8)

where “∝” means proportional to and formula 2 has been substituted in

formula 6. A slight specialization for the hypotheses h ∈ Θ is

Pl({h}) ∝
∏

1≤i≤m

∑
F∈Fi
h∈F

mi(F ).(9)

Next, several results are developed that enable efficient computation of

Pl up to a multiplicative constant. Theorem 1 shows the equality of the

commonality and plausibility functions when θ is atomic with respect to E .

The rest of the results are simple corollaries of this theorem.

Theorem 1 If AtE(θ), then Pl(θ) = Q(θ).

Proof: The given, AtE(θ), along with m(S) ̸= 0 is shown to imply that

S∩θ ̸= ∅ if and only if θ ⊆ S. Therefore, formulas 1 and 2 yield Pl(θ) = Q(θ)

because the summations in both formulas add up the same set of non-zero

values. If θ ⊆ S, then S ∩ θ = θ ̸= ∅ follows because θ ̸= ∅ from AtE(θ).

The proof will be complete if it can be shown that θ ⊆ S when S ∩ θ ̸= ∅,

m(S) ̸= 0, and AtE(θ). Since m(S) ̸= 0, formula 4 implies that there must
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exist a Fi ∈ Fi for each 1 ≤ i ≤ m, such that S = ∩Fi and, therefore, that

(∩Fi) ∩ θ ̸= ∅ because S ∩ θ ̸= ∅ is assumed. Thus, Fi ∩ θ ̸= ∅ for each

i. Since AtE(θ) means that either θ ⊆ Fi or θ ∩ Fi = ∅—the latter is a

contradiction—it follows that θ ⊆ Fi. Therefore, θ ⊆ ∩Fi = S.2

Two simple corollaries are immediately available that justify the compu-

tational formulas introduced at the beginning of the section. The second

result was noted by Shafer [7, page 222].

Corollary 1 Formula 8 is a valid computation if AtE(θ).

Proof: Formula 8 was derived by assuming thatPl(θ) = Q(θ), as is justified

by the theorem, and that K is independent of θ, as is justified by inspection

of formula 5.2

Corollary 2 Formula 9 is a valid computation for all h ∈ Θ.

Proof: Lemma 1 shows that AtE({h}) and, therefore, formula 8 is valid.

Formula 9 only assumes, in addition, that |{h}| = 1.2

The next two corollaries show that Θ is partitioned into maximal sets

that are atomic with respect to the evidence. If θ1 and θ2 are subsets of

the same maximal set, then Pl(θ1) = Pl(θ2). It is also easy to show that

Pl(θ) = Q(θ) if and only if either AtE(θ) or Pl(θ) = 0.

Corollary 3 If non-empty S ⊆ θ and AtE(θ), then Pl(S) = Pl(θ).

Proof: Since Pl is increasing and Q is decreasing, Pl(S) ≤ Pl(θ) and

Q(S) ≥ Q(θ). Further, Pl(θ) = Q(θ) since AtE(θ). Thus,

Pl(S) ≤ Pl(θ) = Q(θ) ≤ Q(S)
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But Lemma 2 proves that AtE(S) follows from this corollary’s assumptions

and, hence, Pl(S) = Q(S). Therefore, Pl(S) = Pl(θ).2

Corollary 4 If AtE(θ1), AtE(θ2), and θ1 ∩ θ2 ̸= ∅, then Pl(θ1) = Pl(θ2).

Proof: Let θ = θ1 ∩ θ2 and note that θ ̸= ∅ by hypothesis. ¿From the

previous corollary, Pl(θ) = Pl(θ1) and Pl(θ) = Pl(θ2) because, respectively,

θ ⊆ θ1 and θ ⊆ θ2. Therefore, Pl(θ1) = Pl(θ2).2

The next result justifies an efficient computation for relative plausibility

when the elements of E are simple support functions: mi is a simple support

function if Fi = {Fi,Θ} or Fi = {Fi} for some non-empty Fi ⊂ Θ. Therefore,

if mi is a simple support function, there exists an 0 < si ≤ 1 such that

mi(Fi) = si and mi(Θ) = 1− si. For the θ such that AtE(θ), relative values

of Pl are calculated by

Pl(θ) ∝
∏

1≤i≤m
θ ̸⊆Fi

(1− si).(10)

Corollary 5 Formula 10 is valid if the elements of E are simple support

functions and AtE(θ).

Proof: SinceAtE(θ), the use of formula 8 is justified by corollary 1. Further,

for each i, either θ ⊆ Fi or θ ∩ Fi ̸= ∅. In the first case, the sum of the mi

over F ∈ Fi, in formula 8 is 1 because θ is a subset of every focal element

and, thus, a unit factor can be removed from the product. In the second

case, θ ∩ Fi = ∅, and the sum of the mi is just mi(Θ) = 1− si.2

The importance of this corollary lies in the fact that virtually every

Dempster-Shafer application reported or analyzed in the literature uses sim-

ple support functions to represent the available bodies of evidence.
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6 Maximizing Pl

Corollary 2 justifies the use of formula 9 as the basis of an efficient algorithm

to find the h ∈ Θ that maximizes Pl({h}). The algorithm, if necessary,

checks to see if C, computed by formula 7, is empty, and hence, if the evidence

combination fails to exist.

The computational complexity and the best algorithms to calculate C and

find the maximizing h can depend on details of the representation chosen for

belief functions and sets. In the following, simply assume that each mi is

represented as a list of pairs: there is a pair of the form {F, mi(F )} for each

F ∈ Fi.

Given this representation, it is clear that formula 7 can evaluate C with

O(
∑ |Fi|) set union operations, O(|E|) set intersection operations, and some

arithmetic. It is also clear that formula 9 can be used to calculate a value

proportional to Pl({h}) by performing O(
∑ |Fi|) set membership tests and

some arithmetic. Therefore, the maximizing h ∈ Θ can be found in O(|Θ| ·∑ |Fi|) operations by doing |Θ| evaluations and selecting the best one.

7 Conclusion

The ability to use a theory is determined in part by our ability to do the

computations that it entails. Since the Dempster-Shafer belief calculus is

known to involve #P-complete calculations, general use of the theory is re-

stricted to cases where structural information enables efficient short cuts or

acceptable approximations are available.

The results here provide a simple and efficient method to make decisions

with Pl even though the values of that function are only determined to within
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a multiplicative constant. However, that is sufficient to enable the theory to

be used in many applications.
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