
A PHONOLOGICAL RULE COMPILER∗

Jeffrey A. Barnett†

System Development Corporation
2500 Colorado Avenue, Santa Monica, California

University of California at Irvine
Department of Information and Computer Science

This paper reports on a language and system for describing and operating
a set of phonological transformation rules. The rules are written in a fairly
general rewrite language which is compiled into machine code for execution
on an IBM 370 computer. The rule compiler and run-time package have
been implemented within the SDC lisp system. A set of 37 rules have been
compiled into a module that is integrated with the lexical matching procedure
used in a continuous speech understanding system.1,2.

The general goal of the rule system is to generate a set of alternative
pronunciations for lexicon entries. Therefore, the transformations are from
one phonemic string into another. A rule set is usually specific to a single
user or a small group with similar speaking characteristics; the effect of this
and other conditions on the number of necessary rules will be examined.
Further, the system is not specifically designed as a rule tester but rather as
a rule implementation tool. This makes considerations of operating efficiency
extremely important.

The issues of ordering and backtracking are examined in the context of
this system and its operational objectives. The conclusion reached is that
rule ordering in this system is inappropriate and that automatic backtracking
is unnecessary because the user’s knowledge of phonology provides better
methods of handling the problem than could be generated by the computer
from abstract examination of a rule.

∗Originally appeared in the Proceedings of the IEEE symposium on Speech Recogni-
tion, April 15–19, 1974, 188–192. IEEE Catalogue No. 74CH0878–9 AE.
†Email: jbb@notatt.com

1



A Phonological Rule Compiler 2

The next section gives a general overview of the system. Other sections
discuss the rule language, rule ordering and backtracking, and the implemen-
tation. The concluding section presents some performance statistics.

General Description

In the SDC speech understanding system, the lexical matching component
is given a proposed lexical entry and boundary conditions. The boundary
conditions may include beginning and ending times and immediate neighbor
words on the left and right, if known. Alternative pronunciations are mapped
against a parametric representation of the acoustic data, and the best match
is scored and returned, assuming that the score is acceptable. The mapping
is done syllable by syllable.

The phonological rules used by the system are roughly grouped into three
sets. The first set of rules generate the set of legal pronunciations that may
be realized by changes in the phonemic spelling. The second rule set deals
with intra-syllable co-articulation effects that may depend upon phonetic
features. The third rule set works with interactions over syllable and word
boundaries and utterance initial and final effects. The phonological rule
compiler produces the module implementing the first set of rules.

Obviously, the above characterizations of membership in the three rule
sets is not sharp. That is, a rule could possibly belong to more than one set.
The assignment of a rule to a particular set when there is an alternative is
governed mostly by considerations of run-time efficiency. That is, the rule
is placed in the system at the point where the least amount of additional
computation will be introduced.

The entries in the lexicon are words and a few special items. Spellings
are phonemic, with syllable and interior word boundaries and vowel stress
also shown. Three levels of stress are used: 0 means reduced, 1 means
unstressed, and 2 means stressed. The representation of the phonemes is in
a coding agreed upon by a group of ARPA contractors for input and output
by computers. Besides the normally recognized phonemes of English, the
system includes symbols for flap t, glottal stop, er (as in bird), vowel stress,
and syllable and word boundaries. In this paper, references to phonemes
include all of the above.

When the mapping procedure is requested to verify an hypothesized lexi-
con entry against the acoustic data, the spelling is retrieved from the lexicon,
and the rules in the first set are operated. This produces the list of alternative

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 3

pronunciations. This list is given to the actual matching modules for verifi-
cation. The lexicon spelling and all alternatives produced by the first rule
set are assumed to be legitimate pronunciations. This has two major effects.
First, it precludes using a morphological lexicon, because a concatenation of
morphs is in general not pronounceable and may require the application of
many rules to become so. Second, the lexicon and first rule set may need
modification for different speakers. This is not a particular defect of this
system. Any systematic modeling of a speaker’s performance will need some
custom tailoring for that particular speaker. Furthermore, it is believed that
most of the changes necessary to accommodate new speakers will take place
inside the first rule set and the lexicon. In our present system, these are the
places most easily modified.

The rule set in the present system contains 37 rules. Several things keep
the size of the rule set used in the system relatively small: 1. A major con-
sideration is that a given lexicon and rule set need serve only a single user
or a small community with similar speaking habits. 2. The output of a re-
construction must map back into another phonemic string. 3. The original
input string does not carry any features denoting the surface structure so no
rules dealing with these phenomena are included at this level of the system.
4. The limited feature set used in the system leads to fairly general schemata,
thereby causing a reduction in the number of necessary rules.

The Rule Language

A phonological rule has four parts: name, pattern, reconstruction, and con-
ditional. A rule’s name maybe any identifier chosen by the user. A pattern
consists of a nucleus and a left and right context. The pattern defines a
schema of phonemic sequences. When such a sequence is found in a spelling,
the part matching the nucleus is replaced by the sequence generated by the
reconstruction part of the rule. The conditional is an optional part of a rule.
When present, the conditional specifies certain necessary interrelationships
between members of the input sequence matched by the patterns (This speci-
fication task has been accomplished by using bound variables in some rewrite
schemes.3) Thus the necessary and sufficient criterion that a rule apply to an
input sequence is that the pattern match part of the sequence and that the
conditional, if present, be satisfied.

The pattern, reconstruction, and conditional portions of a rule are built
up from phoneme and feature names. In addition, the reconstruction and con-

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 4

ditional may reference phonemes and their features in the sequence matched
by the pattern. Each phoneme is categorized by some combinations of the
values of six features (or properties). The features and their possible values
are:

KIND: VOWEL, CONST (consonant), BOUNDARY major categories

CLASS: NASAL, GLIDE, LATERAL, CENTRAL, FRIC (ative), PLOS (ive), AFRIC (af-
fricate), MISC (ellaneous) consonantal categories

PLACE: LABIAL, DENTAL, ALVEOLAR, ALVPAL (alveolar-palatal), PALATAL, VELAR
consonantal places of articulation

VOICE: +VOICE, -VOICE voiced-unvoiced indicator

STRESS: 1, 2, 3 vowel stress

NAME: ARPA contractor’s set

In the examples that follow, the phonemic names used will be: * – syllable
boundary, # – word boundary, DX – flap t, R – rant, N – net, M – met, NX –
sing, AX – schwa, IH – bit, IY – beat, TH – thing, T – ten, D – debt, P – pet.

Language features will be introduced by example. A rule will be given in
the phonological rule language. Then the name, reconstruction, pattern and
its components, and conditional will be listed separately, followed by a prose
description.

$ DEGEMINATION

NIL = /CONST/ OPT BOUNDARY, CONST IF NAME@1 EQ NAME@3;

name DEGENINATION

reconstruction NIL

pattern /CONST/ OPT BOUNDARY, CONST

nucleus CONST

left context vacuous
right context OPT BOUNDARY, CONST

conditional IF NAME@1 EQ NAME@3

(1)

(1) states that the first member of a pair of doubled consonants may be
deleted. The rule also applies if the consonant pair is separated by a sylla-
ble or word boundary. The dollar sign and semicolon delimit the definition.
DEGEMINATION is the rule name, and NIL is the void reconstruction sequence

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 5

denoting deletion. Within the pattern, the portion surrounded by slashes is
the nucleus. There is no left context, and the right context is the optional
syllable or word boundary followed by a consonant. In a pattern, OPT intro-
duces the specification of a phoneme whose presence is optional, that is, it is
allowed but not necessary in the input string.

The conditional states that the rule may only apply if the first and third
items specified by the pattern have the same name. In the enumeration of
parts of a pattern, an optional phrase counts as one item whether or not the
specified phoneme is present in the matched spelling.

A simple rule for generating flaps might be

$ FLAP DX = VOWEL, OPT R, * /T OR D/ VOWEL;

name FLAP

reconstruction DX

pattern VOWEL, OPT R, * /T OR D/ VOWEL

nucleus T OR D

left context VOWEL, OPT R, *

right context VOWEL

conditional not used

(2)

(2) states that a t or d may be replaced by a flap t when followed by
a vowel and preceded by a syllable ending in a vowel or a vowel followed
by an R. In a pattern, the OR connective may be used to specify alternative
matching criteria. If the phoneme in the input string fulfills either criterion,
it matches the OR phrase. This is an example of a simple replacement rule.

An example of an insertion rule is

$ HOMORGANIC.STOP.INSERTION

(PLOS PLACE@1 -VOICE) = NASAL, OPT * // (PLOS-VOICE) OR (FRIC-VOICE)

IF CLASS@3 EQ FRIC OR PLACE@1 NQ PLACE@3;

name HOMORGANIC.STOP.INSERTION

reconstruction (PLOS PLACE@1 -VOICE)

pattern NASAL, OPT * // (PLOS-VOICE) OR (FRIC-VOICE)

nucleus vacuous
left context NASAL, OPT *

right context (PLOS-VOICE) OR (FRIC-VOICE)

conditional IF CLASS@3 EQ FRIC OR PLACE@1 NQ PLACE@3

(3)

(3) illustrates several interesting features of the phonological rule lan-
guage. The reconstruction specifies the unvoiced plosive, which is homor-

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 6

ganic with the nasal (i.e., the place of articulation is “borrowed” from the
nasal), the first item in the pattern. The right context specifies either an
unvoiced plosive or an unvoiced fricative. This is an example of a language
capability to specify “feature bundles” for parts of the pattern. Thus, (3)
states that an appropriate plosive may be inserted after a nasal (or a nasal
and a syllable boundary) and before an unvoiced fricative or before an un-
voiced plosive that is heterorganic with the preceding nasal. In the word
“something” a p would be inserted between the m and the th.

$ ING.REDUCTION

IH:0, N OR AX, N = *, REP 0 CONST /IY:0 OR IH:0, NX/ #;

name ING.REDUCTION

reconstruction IH:0, N OR AX, N

pattern *, REP 0 CONST /IY:0 OR IH:0, NX/ #

nucleus IY:0 OR IH:0, NX

left context *, REP 0 CONST

right context #

conditional not used

(4)

For polysyllabic words ending in “ng,” (4) abbreviates the pronunciation.
For example, the word tracking, would be modified to trackin’ or trackan’.
The vowel name followed by a colon specifies the level of stress. IY:0 means
a reduced IY. To specify the occurrence of a sequences of phonemes satisfying
the same description, a repetition phrase may be used. A repetition phrase
begins with the word REP followed by the minimum length in phonemes of
the sequence to be matched. Thus, “REP 0 CONST” matches any sequence
of zero or more consonants. In a reconstruction, OR separates alternative
substitution sequences. Therefore, (4) behaves as if it were two separate
rules with the same pattern (and conditional if one had been used). One
of the rules would have the reconstruction sequence IH:0, N and the other
would have the reconstruction sequence AX, N.

Rule Ordering and Backtracking

Rule Ordering

In constructing a system to operate transformation rules, the implementer
must decide upon an ordering strategy for applying the rules to an input
string. In [3], Chomsky and Halle describe a particular scheme for use with

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 7

a large set of mandatory rules. This scheme has been approximated in a rule
testing system reported on by Bobrow and Fraser.4 The input string to a
Chomsky-Halle system is a sequence of segments, normally derived from a
morphological base, which is “parenthesized” to show surface structure. The
set of rules is applied in a fixed order to the most deeply nested sequence,
then the inner parentheses are dropped. This process is repeated until all
parenthetic structure has been removed.

When a rule is applied to the input sequence (at a particular parenthesis
level), it is matched to all places in the sequence to which it applies before
any reconstruction action is taken. All reconstructions for this rule are then
made simultaneously at the present level. Following this, the next rule in
order is applied to the input sequence at the present working level. After all
rules have cycled in this manner, the inner parentheses are removed, etc.

Several differences between the intention of the Chomsky-Halle system
and the system described in this paper should be noted. In the former, the
original string contains surface structure bracketing, and the original spelling
is made from a concatenation of morphemes. Also, the rules are expressed
in terms of a rich feature set that can construct an element in the output
string that may be represented only in terms of the features. Further, the
output is a single string that is an idealized pronunciation. In the latter,
the original input string does not contain bracketing and is itself assumed
to be a pronounceable, syllabic spelling. The rules are expressed in terms
of a simple feature set, and the derived results may be representable as a
phonemic string needing no features, only phoneme name and vowel stress.

These considerations lead to the selection of different ordering strategies
for applying rules. First, it is clear that the derivation of a pronounce-
able result from a non-pronounceable input requires the application of some
mandatory rules. Just as clearly, the generation of the set of alternative
pronunciations from a base pronunciation will involve optional rules. The
necessity for ordering the kind of rules in the Chamsky-Halle system is well
defined in [3]. However, the same arguments do not apply here. The size of
the alphabet that codes the output string is much smaller; therefore the size
of the input alphabet to the “next” rule is also smaller. This means that the
complexity of the rule interaction should be sufficiently reduced as to not
need rigid ordering to avoid exotic surprises. Also, if each rule transforms
a legal pronunciation into another legal pronunciation then rule1(rule2(s))
and rule2(rule1(s)) may produce different output, and both must therefore
be generated. The objection may be raised that if s = rule1(rule2(s)) then

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 8

an unordered evaluation of the rule set could lead to an infinite application
sequence; two principal things keep this form happening. First, the lexicon
entries should follow some set of conventions. Second, direct inverse rules
need not be coded. For instance, a lexicon convention might be that flap t is
not used if a t or a d would also be legitimate in the pronunciation. Then,
only the rules generating the flap from t and d would be included, not their
inverses. This obtains both pronunciations when appropriate without infinite
looping.

Because of the above considerations, a decision was made to apply the
rules in an essentially unordered manner. Application of all the rules is essen-
tially continuous in all orders and sequences until the full set of alternative
pronunciations derivable by the rule set has been obtained.

Backtracking

In addition to considerations of rule ordering, the system implementer must
adopt a strategy for handling backtracking. In the described rule language,
the need for backtracking can occur only through the use of optional (OPT)
and repetition (REP) phrases. The nucleus of the pattern

* /CONST, OPT CONST, R/ VOWEL (5)

would appear to match any syllable initial consonant cluster ending in an
r. However, without backtracking, the thr in “three” would not be properly
matched. CONST would match th and OPT CONST would match the r, leaving
nothing to match the R part of the pattern. To implement (5) in a non-
backtracking system, one could write

* /CONST, OPT (CONST-R), R/ VOWEL (6)

The only case not handled by (6) is a three consonant cluster ending in rr.
The problems become worse when there are multiple optional and repetition
phrases in the same pattern. However, the desirability and payoff for im-
plementing automatic backtracking varies most directly with the allowable
complexity of specification in the pattern, and not so much with pattern
length. This is because, as the complexity grows, the determination of items
that fulfill one specification but not the others becomes more difficult. Also,
the tendency to use partial rather than complete specifications hightens this
effect in the face of added complexity. In a phonetic (principally feature-
driven) transformational system, backtracking is virtually a necessity. In the

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 9

described system, automatic backtracking has not been implemented. The
pattern descriptions are fairly simple, and the user is usually a far better
decision maker on the exact criterion to stop a repetition or accept an op-
tional occurrence. In most cases, the criterion will be derived from the user’s
knowledge of phonology rather than from some abstract examination of the
pattern. For example, (6) is a legitimate rewrite of (5) because the pair rr
should not occur in an English syllable. Thus, the fact that the lexicon is
coded in syllables imposes additional constraints that are not easily known
by the system but that are useful to the rule implementer.

A problem with automatic backtracking is a possible great increase in
execution time. For instance, if a pattern contains n optional and no repet-
itive phrases, then in the worst case, the system will have to attempt 2n

different matches of the pattern to the input string. A pattern that contains
a repetitive phrase represents an infinite rule schema. But the fact that a
given input string contains a fixed number of elements bounds the amount of
computation. If a pattern containing n repetition and no optional phrases is
matched to an input string containing p elements not matched by repetition
phrases, then in the worst case, the system would have to try approximately
pn/n! distributions of the input string to matches of the repetition phrases.

System Implementation

The Rule Compiler

The phonological rule compiler has been implemented within the SDC lisp
system, which operates on an IBM 370 Model 145. The syntax analysis pass
was integrated into the infix language translator using the $ as the escape
token to the special rules language. The infix translator normally transforms
an algol-like language into lisp. In all, the rule compiler comprises six
passes: syntax analyzer, expander, boolean optimizer, register allocator, code
generator, and assembler.

The output of the compiler is one function for each reconstruction se-
quence specified by a rule. The output functions are independent in that
they call no other functions. However, the functions do not use standard
linkage conventions so that the run-time driver, APPLY, must make special
invocations. Each of these functions serves as a partial predicate. If the
input string satisfies the rule operated by a function, the value is the length
of the reconstruction sequence and the location in the string at which the

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 10

substitution is to be performed. If the rule is not satisfied, the function re-
turns false. The actual string reconstruction by substitution is performed by
a single function included in the run-time package. A brief description of the
compiler passes appears in the paragraphs below.

Syntax Analyzer. The syntax pass is implemented as a language extension of
the lisp infix translator. The input token string is turned into a Polish-
prefix, list-structured representation. Syntax and local semantic errors are
detected and reported to the user. As is normal with use of the infix system,
errors cause immediate entrance to an editor for correction by the user. The
parsing algorithm is top-down, and the rule language is so constructed that
backup is never necessary over more than one token. The token parsing
package (lexical analyzer) is borrowed from the infix system.

Expander. The expander pass completes the task (started by the syntax an-
alyzer) of turning the input into a Polish-prefix command and test sequence.
This is accomplished in two phases: explicit indexing and rippling. The AX

in the pattern, “*/R/AX” would be turned into “(EQ (NAME 3) AX)” by the
explicit indexing phase. Thus, after this phase, the internal representation
of the conditional and pattern are structurally equivalent.

The rippling phase reorders and merges the various components of the
reconstruction, pattern, and conditional. In the rule,

$ EXAMPLE AX = CONST /VOWEL/ CONST IF STRESS@2 NQ 2; (7)

the nucleus would become

(AND (EQ (KIND 2) VOWEL) (NQ (STRESS 2) 2)) (8)

The basic algorithm for combining the conditional with parts of the pattern
is

• If the conditional is an AND form, then apply this algorithm to each
embedded form, otherwise go to the next step.

• Find the highest-numbered index reference to a pattern element from
the form, and attach the form to that element with an AND operator.

The algorithm allows all tests to be performed as quickly as possible, thus
allowing the rules to take a failure exit after a minimum of computation time.

The algorithm for moving elements of the reconstruction sequence into
the pattern sequence is

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 11

• If the element has no indexed references, put it at the and of the pattern
sequence.

• If the element has any indexed references, put it just after the pattern
element referenced by the highest-numbered index reference from the
reconstruction element.

The motivation for placing a reconstruction element at the end is to save
time if the rule does not match the input string. The reason for placing
reconstruction elements at other than the end is saving general-purpose reg-
isters that may become necessary if an optional or repetitive phrase occurred
between a place referenced by an index and the place of element insertion.
(See paragraph on register allocator below, for more details.)

Boolean Optimizer. The boolean optimization pass factors and simplifies AND

and OR forms. For example, the expression

(AND (OR a b c) (OR x c y)) (9)

would be transformed into

(OR c (AND (OR a b) (OR x y))) (10)

Several other transformations not illustrated by (9) and (10) are also
performed by this pass.

Register Allocator. The operation of the register allocator is very straightfor-
ward except when indexed references are made across an optional or repet-
itive phrase. The difficulty is that the number of phonemes separating the
referencer and referencee is not resolvable until execution time.

A very simple solution to this problem has been adopted. Code operating
after a repeat or optional phrase assumes that the least permissible length
has occurred. The indices output by the expander pass are computed under
this assumption. A common base register is incremented every time a match
has been made that exceeds the minimum permissible length. When cross-
references are made, another register is loaded with a copy of the common
base before the operation of the optional or repetition phrase. This second
register will be used when the cross-references are made. Care is taken to
not use more registers than necessary.

Code Generator. The code generation pass turns the output of the register
allocator into symbolic machine language. The algorithms used try to opti-
mize the output test and branch instructions. A property of the algorithms

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 12

is that if two inputs to the code generator are equivalent under DeMorgan
transformations, double negation, and/or transitivity, then the output code
is bit-for-bit identical. The test and move instructions used for the matching
and reconstruction are all memory-to-memory or immediate-to-memory. An
example of code output by the rules compiler is given below.

Assembler. The assembler is the lap assembler, which is part of the lisp
system. It was not constructed or modified for use with the rule compiler.

Run-time Package. The run-time package consists of those functions neces-
sary to operate the assembled rules as well as some additional user aids to
facilitate testing.

GENAPPLY is a function that, when called, causes compilation of the rule
loop driver function, APPLY. APPLY is implemented as a large loop containing
explicit calls on each rule function and proper linkage to the string rewrite
procedure.

RECONSTRUCT is the rewrite procedure that computes the phonemic name
of an element built from features such as the reconstruction part of (3). It
also rewrites the input string with the appropriate changes. The changed
string is placed in a new array; the original is not damaged.

DELRULE is a function of one argument, a rule name. The named rule
is deleted from the system. The functions CHECKSPELL and MAKESPELL are
provided to error-check spellings and translate the spellings into the internal
representation. The main program of the rule operating system is RUNRULE.
Its argument is a phonemic input string. The output is the list of alternative
pronunciations.

Internal Representation

For reasons of efficiency, each phoneme in a spelling sequence is internally
coded as a 32-bit integer rather than as a lisp identifier. A phonemic spelling
is stored as an array of these integers. The 32 bits are subdivided into
four 8-bit bytes in which the features are represented. Byte 0 is used for
general classification information: the phoneme’s kind (boundary, consonant,
or vowel), the stress level for vowels, and whether the phoneme is voiced.
For consonants, bytes 1 and 2 specify the class and place of articulation,
respectively. In each of these bytes only one bit may be turned on. For
vowels and boundaries, bytes 1 and 2 are unused. Byte 3 is an 8-bit code for
the phoneme’s name. Much redundant information is present in the selected

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 13

representation. However, the 370’s order codes contain several instructions
for bit and byte testing that can exploit this to advantage.

Example Compilation

Below is the output of the phonological rule compiler for (3). See the IBM
Principles of Operation5 for an explanation of the 370’s order code.

FUNCTION HOMORGANIC.STOP.INSERTION

TM 1(R1),8 is 1st phone a nasal?

BCR 10,R8 no, take failure exit.

MVC CHANGE(4),=F’1074790400’ move (plos-voice) to change area.

MVC CHANGE+2(1),2(Rl) move place@l to change area.

LR R2,R1 save base before an optional

phrase.

CLI 7(R1),192 *?

BC 7,L101 no.

LA R1,4(R1) yes, bump common base.

L101 LA R3,4(R1) compute substitution address.

ST R3,BMRK save beginning address for

substitution.

ST R3,EMRK save ending address for

substitution.

TM 4(R1),16 is next item voiced?

BCR 5,R8 yes, take failure exit.

TM 5(R1),32 is item a fricative?

BC 5,L102 yes.

CLC 6(1,R1),2(R2) no, place@l EQ place@3?

BCR 8,R8 no, take failure exit.

TM 5(R1),16 is it a plosive?

BCR 10,R8 no, take a failure exit.

L102 L R7,=F’1’ yes, rule matches. specify

reconstruction length of one

and exit.

Performance Measurement

The phonological language and operating system described in this paper
have been extensively used in a speech understanding system. The sys-
tem’s lexicon contains approximately 150 entries with an average length of
10 phonemes including syllable and word boundaries. The rule set used con-
tains 37 rules of varying complexity. The measurements given herein were
made on the 150-entry lexicon with the 37-rule set.

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 14

Compiler Timing

The average compilation time for a rule was .758 seconds. The time to oper-
ate GENAPPLY was 4.377 seconds. The rules were on disk and the compilation
times include input.

Operation Measurements

The average number of alternative pronunciations per item in the lexicon was
2.289, including the original spelling in the lexicon. The probability that a
given rule would apply at a given spot in an input string was .00321. The
average rule operation time, including matching, reconstruction, and APPLY

loop, is approximately 55 micro-seconds. The average total operating time
of RUNRULE on a lexicon entry is .0437 seconds.

Conclusion

The phonological rule language system described in this paper has as its
general goal the generation of alternative pronunciations for lexicon entries.
The issues of ordering and backtracking are examined in this context, and the
conclusions drawn that automatic backtracking is unnecessary and ordering
the application of the rules is inappropriate. A general aim of the system has
been run-time efficiency. That this has been achieved is supported by the
data presented in the Performance Measurement section above. Some details
of the optimizing compiler for the rules language have been presented. The
lack of automatic backtracking in the system has made it possible to compile
rather then interpret, as is done in all other known systems with similar
objectives.

Acknowledgements

Several people have made valuable contributions to this project and I would
like to take this opportunity to thank them for their help and guidance.
Douglas Pintar aided in the implementation and debugging of the system.
Peter Ladefoged and Rollin Weeks made contributions to the design decisions
as to what constituted a necessary and sufficient system. Martin Kay helped
stimulate my interest in the indeterminacy problems of rule ordering and
backtracking.

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192



A Phonological Rule Compiler 15

This research was supported by the Advanced Research Project Agency
of the Department of Defense under Contract No. DAHCI5–73–C–0080.

References

[1] “A Voice Activated Data Management System,” H. B. Ritea, this confer-
ence.

[2] “Predictive Syllable Mapping in a Continuous Speech Understanding Sys-
tem,” R. Weeks, this conference.

[3] “The Sound Patterns of English,” Chomsky and Halle, Chapter 8, Harper
and Row, 1968.

[4] “A Phonological Rule Tester,” Daniel G. Bobrow and J. Bruce Fraser.
Communications of the ACM, Vol 1l/Number ll/Nov. 1968, page 766–772.

[5] IBM Systern/370 Principles of Operation, IBM, GA22–7000–2, Third
edition, 1972.

In Proceedings: IEEE Symposium on Speech Recognition, 1974, 188–192


