
Optimal Satisficing Tree Searches

Dan Geiger and Jeffrey A. Barnett
Northrop Research and Technology Center

One Research Park
Palos Verdes, CA 90274

Abstract
We provide an algorithm that finds optimal search
strategies for and trees and or trees. Our model
includes three outcomes when a node is explored:
(1) finding a solution, (2) not finding a solution and
realizing that there are no solutions beneath the cur-
rent node (pruning), and (3) not finding a solution but
not pruning the nodes below. The expected cost of
examining a node and the probabilities of the three
outcomes are given. Based on this input, the algo-
rithm generates an order that minimizes the expected
search cost.

Introduction
Search for satisfactory solutions rather than optimal
ones is common in many reasoning tasks. For example,
a theorem prover may search for an acceptable proof
although that proof is not necessarily the shortest pos-
sible. Similarly, planning the way home from a friend’s
house does not require us to look for the shortest path,
any reasonable path suffices.

Simon and Kadane (1975) examine satisficing search
using a simple gold-digging example: An unknown
number of treasure chests are randomly buried at some
of n sites, but neither the sites nor the depth of burial
are known with certainty. At each site, a sequence of
one-foot slices can be excavated, and a treasure may be
disclosed by the removal of any one of these slices. The
probability that a treasure lies just below each slice is
known as is the cost of excavating that slice. Which
search strategy minimizes the expected cost to find a
treasure?

If slices can be excavated in arbitrary order, the
optimal search strategy is to excavate slices in de-
creasing order of their benefit-to-cost ratios. However,
there is a constraint: a slice can be excavated only af-
ter all slices above it are excavated. Consequently, a
greedy approach—selecting the currently most promis-
ing slice—is not adequate. One should prefer to exca-
vate a slice with a low benefit-to-cost ratio if a suffi-

ciently promising slice lies under it. Simon and Kadane
provide a method to find excavation sequences with the
least expected cost to find a treasure.

This article defines a more detailed model of search
where excavating a slice may prune search beneath that
slice. Simon and Kadane’s characterization of optimal
excavation sequences is shown valid in our model and
a variant of Garey’s (1973) algorithm is developed to
find these sequences for trees.

An example of an or graph is given where the
optimal strategy must be constructed dynamically.
The example stands in sharp contrast to Simon and
Kadane’s model where optimal search strategies are
determined before search starts. Finally, optimal
searches of and-or trees are shown to require dynamic
strategies too.

Search of OR Trees: Preliminaries
We extend Simon and Kadane’s search model to allow
three rather than two outcomes for excavating a slice:
(1) a treasure is found, (2) a treasure is not found and
it is realized that there are no treasures beneath the
current slice (pruning), and (3) a treasure is not found
but one can still be found below. In the later case, sev-
eral alternatives are revealed for further digging. The
respective probabilities of the three outcomes for the
slice s are p+(s), p−(s), and p0(s). These outcomes are
assumed to be mutually-exclusive and exhaustive and,
hence, p+(s) + p−(s) + p0(s) = 1. Simon and Kadane
exclude the second outcome because they do not model
pruning.

Metaphorically, if a treasure is not found at a slice,
then either (1) some “doors” to new slices open—a
situation that corresponds to exposing the immediate
children of a node in a search tree or (2) no doors
open—a situation that corresponds to either reaching
a leaf node or pruning deeper search through that node.
We assume that each slice is part of a single site and
that each slice can be reached by only one path from
the surface. Consequently, a site is a metaphor for

In Proceedings of Ninth National Conference on Artificial Intelligence (AAAI–91) 441–445



a tree and multiple sites for a forest.1 More general
searches are discussed later.

A sequence of slices b = s1 . . . sr is a (search) strategy
when (1) the si are distinct slices and (2) all slices
above each si are in b and all precede si.

Define φ+(s) = p+(s)/c(s) as a benefit-to-cost ratio
with the assumption that p+(s) 6= 1 and c(s) 6= 0.
These assumptions entail, respectively, that no slice
contains a treasure with certainty and that no slice is
excavated for free. Assume, also, that the probabilities
and cost for one slice are independent of the outcome
of excavating other slices.

The cost of a strategy b = s1 . . . sr, denoted c(b), is
computed by

c(b) =
r∑
i=1

β(si|s1 . . . si−1) · c(si), (1)

where β(x|s1 . . . sz) stands for the probability that slice
x is excavated given the strategy starts with s1 . . . sz.
Similarly, the probability that a strategy b unearths a
treasure, denoted p+(b), is computed by

p+(b) =
r∑
i=1

β(si|s1 . . . si−1) · p+(si).

Formulas for β are developed below. For each strategy
b, define φ+(b) = p+(b)/c(b) and q+(b) = 1− p+(b).

The problem is to find a strategy having the least
expected cost, i.e., to find a strategy bo such that
c(bo) ≤ c(b) for every strategy b.

In Simon and Kadane’s search model, a slice si in a
strategy b = s1 . . . sr is excavated if and only if none of
s1 . . . si−1 contain a treasure. In this case, the expected
cost of b is derived from Eq. (1) by substituting

β(si|s1 . . . si−1) =
i−1∏
j=1

q+(sj). (2)

This equation states that the probability that si is ex-
cavated equals the probability that no treasure is found
in slices s1 . . . si−1.

In our search model where pruning is permitted, the
expected cost of a strategy is still given by Eq. (1),
however, the expression for β is more complex. A slice
is excavated if and only if every slice above it opens its
doors (i.e., the path to that slice is unearthed) and no
treasure is found by prior excavation.

1The word-pairs, site/tree, slice/node, and excava-
tion/search are used interchangeably throughout this ar-
ticle to emphasize the analogy between the gold-digging
example and tree searches.

When there is only one site, a tree T , then β is
defined by

β(si|s1 . . . si−1) =
n∏
j=1

p0(aj)
∏

d∈K(aj)
d6=aj+1

Q+(d) (3)

Q+(d) = p−(d) + p0(d)
∏

x∈K(d)

Q+(x),

where K(d) is the set of children of node d that are
in {s1 . . . si−1} and a1 . . . an is the path from the root
of T to si = an+1. The formula for Q+(d) computes
the probability that a subtree rooted at node d does
not contain a treasure; when d is a leaf node, then
Q+(d) = p−(d) + p0(d) = q+(d).

When there are several sites, i.e., a forest, the ex-
pression for β(si|s1 . . . si−1) in Eq. (3) is multiplied by
Q+(r) for each root node, r, in s1 . . . si−1 besides the
root of T . The original formula calculates the probabil-
ity that a path to si is unearthed and that no treasure
is found in T prior to excavating si. The additional
factors account for the assertion that no treasure is
found at the other sites either.

Thus, the calculation of β in Eq. (3) depends on the
topology of the sites as just described and on si itself
because its ancestors, a1 . . . an, are distinguished in the
formula. Eq. (2) depends on neither.

Search of OR Trees: An Algorithm
A brute force approach for choosing the best excava-
tion strategy computes the cost of each strategy and
chooses the least expensive. Fortunately, when two
strategies are identical except that two adjacent slices
are switched, one can choose between the two strate-
gies without computing their expected costs; merely
compare the benefit-to-cost ratios, φ+, of the slices
that are switched, and choose the strategy where the
slice with the highest ratio is excavated first. This lo-
cal property facilitates a polynomial-time algorithm to
find an optimal strategy. The next theorem spells out
this property.

Theorem 1 If b = s1 . . . sr is a strategy and b′ is a
strategy obtained from b by switching two adjacent
slices, si and si+1, then

c(b) < c(b′) if and only if φ+(si) > φ+(si+1)
c(b) = c(b′) if and only if φ+(si) = φ+(si+1).

Proof: Let γ be the subsequence of b that precedes
sisi+1. The expected costs of γsisi+1 and γsi+1si are
divided into contributions from three mutually exclu-
sive situations: (1) neither si nor si+1 can be exca-
vated because either an ancestor of each failed to open

442



its doors or a treasure was found in one of γ’s slices,
(2) only one of the two slices can be excavated, and
(3) both slices can be excavated.

The expected costs of γsisi+1 and γsi+1si are iden-
tical in the first two cases because changing the po-
sition of slices that are not excavated cannot change
the expected cost of a strategy. In the third case, the
expected costs are given by

c(γsisi+1) = c(γ) + c(si) + q+(si)c(si+1)
c(γsi+1si) = c(γ) + c(si+1) + q+(si+1)c(si).

The first equation stems from the assumption that si
is excavated with certainty after γ is excavated and
from the fact that slice si+1 is excavated after si with
probability q+(si). The probability of excavating si+1
after si is q+(si) = p−(si)+p0(si), and not just p0(si),
because slice si is not on top of si+1. (Otherwise, b and
b′ could not both be strategies). The second equation
holds by symmetry of i and i+1. The theorem follows
by taking the difference between these two equations. 2

The basis for our algorithm to find optimal excava-
tion sequences lies in the observation that a slice with
the highest φ+ should be excavated immediately after
the slice above it is excavated.

Theorem 2 If sj is a slice with the highest φ+ and
sj has an immediate parent si, then there exists an
optimal strategy that includes the subsequence sisj .
If sj is a top slice (root node), then there exists an
optimal strategy that starts with sj .

Proof: If si is an immediate parent of sj , then si
must be excavated before sj . Suppose sir1 . . . rmsj is
a subsequence in some optimal strategy. Note that no
rk can be an ancestor of sj because si is the immediate
parent of sj . Hence, we can repeatedly switch sj with
each ri to obtain a new strategy in which sj directly
follows si. By Theorem 1, the cost of this strategy is
less than or equal to the cost of the original. If sj is a
root node that follows r1 . . . rm in an optimal strategy,
it can be switched to the front because no ri can be
its parent. Theorem 1 entails that the transformed
strategy is at least as good as the original one. Hence,
either sj can start the strategy or immediately follow
its parent. 2

Theorem 2 implies that whenever a slice with the
highest φ+ is a top slice it can be placed first in a strat-
egy. The remaining sequencing problem is smaller. If
the best slice is not a top slice, it can be combined with
its parent to form a single slice. Again, the remaining
problem is smaller. Thus, each step reduces the num-
ber of slices by 1 until no slices are left and an optimal
strategy is obtained. This algorithm is summarized in
Figure 1.

Input: A collection of trees, with nodes N .

Output: An optimal search strategy stored in γ.

1. Set γ to the empty sequence.
2. Find a node b ∈ N having the highest φ+.
3. If b is a root node, then set γ = γb and remove
b from N .

4. Otherwise, b has a parent b′ in N . Combine
nodes b′ and b into a single node denoted by
b′b. Place node b′b in N and remove b′ and b
from N . Compute φ+(b′b).

5. If some nodes are left in N , go to Step 2.

Figure 1: Algorithm to find optimal strategies.

It remains to explicate how to compute the cost and
probabilities for the combined node, b′b. When prun-
ing is not modeled, the parameters are computed by

c(b′b) = c(b′) + q+(b′) · c(b)
p+(b′b) = p+(b′) + q+(b′) · p+(b),

where b and b′ are subsequences and not necessarily
single nodes (Garey 1973). The expected cost of an
optimal strategy is preserved by these transformations
due to Eqs. (1) and (2).

However, when pruning is modeled, the combining
equations depend on the topology of the tree. Suppose
b′ in the algorithm is the result of combining a subtree
T ′ and b is the result of combining a subtree T . Since
b′ is a parent of b,

c(b′b) = c(b′) + β(b′, b) · c(b)
p+(b′b) = p+(b′) + β(b′, b) · p+(b),

where β(b′, b) is the probability that it is necessary to
execute b after b′ is executed. Moreover, β(b′, b) equals
β(r|s1 . . . sz), where b′ = s1 . . . sz and r is the first node
in b.

The complexity of the algorithm is O(n2). On each
iteration, finding the node with the highest φ+ is
O(log n) using a priority heap, and the calculation of
p+ and c for a merged node is O(n). Since the algo-
rithm iterates n times, the bound follows.

Our algorithm is similar to one described by Garey
(1973). Both algorithms repeatedly transform a search
tree by merging pairs of nodes into single nodes. They
differ in the type of transformations applied; Garey’s
transformations always involve a leaf node while our
transformation involves a node with the highest φ+

value. Further, our algorithm deals with three possible
outcomes of node exploration while Garey’s deals with

443



s1n
�
�
��

A
A
AU

s2n
?
s4n

s3n
s5n
?
s6n
?
s7n

s8n

Figure 2: Search sites.

two. Nevertheless, Garey’s algorithm can be amended
to account for three-outcome evaluation as well and its
complexity is the same as ours.

An Example
Consider three sites having the structure depicted in
Figure 2 and the parameters given by Table 1. The
optimal strategy for this example is calculated next
using our algorithm.

Node s3 has the highest φ+. It is therefore combined
with s1. The parameters of the combined node are

c(s1s3) = c(s1) + p0(s1)c(s3)
= 10.8

p+(s1s3) = p+(s1) + p0(s1)p+(s3)
= .74

and, thus, φ+(s1s3) = .069. Now the node with the
highest φ+ is s4. Its φ+ is highest among all nodes
including the newly created node s1s3. Hence, nodes
s4 and s2 are combined and the resulting parameters
are c(s2s4) = 5.5, p+(s2s4) = .55, and φ+(s2s4) =
.1. Node s2s4 now has the highest φ+. It is therefore
combined with its parent s1s3. The new parameters
are

c(s1s3s2s4) = c(s1s3) + p0(s1)q+(s3)c(s2s4)
= 11.68

p+(s1s3s2s4) = p+(s1s3) + p0(s1)q+(s3)p+(s2s4)
= .828

and the resulting φ+ is .071.
Node s1s3s2s4 is a root node and it has the highest

φ+. Thus, it is added to γ as a bloc. The next node
is s5. It is also a root node with the highest φ+ and
is therefore added to γ as a bloc. Now node s7 is
combined with its parent s6. The resulting node s6s7
has a lower φ+ value (0.018) than s8. Thus, s8 is the
next bloc added to γ and s6s7 is the fourth and last.

c p+ p0 φ+

s1 10 .1 .8 .01
s2 5 .2 .5 .04
s3 1 .8 0 .8
s4 1 .7 0 .7
s5 4 .1 .5 .025
s6 9 .1 .7 .011
s7 6 .2 0 .033
s8 10 .2 0 .02

Table 1: Search sites parameters.

Notably, any strategy produced by our algorithm
consists of a sequence of blocs with decreasing φ+ val-
ues. In this example, the blocs are s1s3s2s4, s5, s8,
s6s7 with the respective decreasing φ+ values, .071,
.025, .02, and .018. This bloc structure coincides
with Simon and Kadane’s characterization of optimal
strategies. It is not clear, however, whether this struc-
ture extends to strategies for or graphs when three
rather than two evaluation outcomes are possible.

The Dual Problem: AND Trees
We can think about search of or trees as a procedure
for proving the root node true: a node is proven true
if and only if it is proven true by its own evaluation or
at least one of its children is proven true. Proving true
corresponds, in the gold-digging metaphor, to finding
a treasure.

The task for and trees is to prove the root node
false. A node in an and tree is proven false if and only
if it is proven false by its own evaluation or at least one
of its children is proven false.

The algorithm of Figure 1 with a minor change,
switch the roles of p− and p+, finds optimal search
strategies for and trees.

Dynamic vs. Static Sequencing
Previous sections provide an algorithm that finds op-
timal search sequences for or trees and for and trees.
In these two cases, optimal search sequences can be de-
termined before search starts. However, this property
does not hold in general. Next, we provide two exam-
ples where optimal sequences must be revised during
search.

Consider the or graph shown in Figure 3. There
are three surface slices x, y, and z, and two deeper
slices, v and w, each of which can be reached from two
distinct surface slices. The rule is that a slice cannot be
excavated until all of its parents are excavated. Thus,
the graph encodes a partial order constraint on slice

444



yk
A
AAU
vk

xk
�
���

A
AAU
wk

zk
�
���

Figure 3: Sites with multiple paths.

s1n
�
�
��

A
A
AU

s2n̂̂
�
�
��

A
A
AU

s3n
?

s4n
s5n

s6n

Figure 4: and-or tree.

excavations.2

Suppose x is a node with extremely high φ+. Then
x is excavated first. How should the rest of the nodes
be ordered for excavation? If no treasure is found at
x, then there are two options: (1) the digger learns
with probability p−(x) that there is no gold beneath
x in which case v and w will not be excavated, or
(2) he learns with probability p0(x) that there may
be gold in v and w. In the first case the decision about
which slice to excavate next depends only on φ+(y)
and φ+(z) while in the second case the decision de-
pends on φ+(yv) and φ+(zw) as well. Hence, an op-
timal sequence cannot be determined until the result
of excavating x is known, i.e., it must be determined
dynamically.

Optimal searches of and-or trees require dynamic
strategies as well. The interpretation of and-or trees
is consistent with the definitions used previously for
and trees and or trees. In particular, the tree of Fig-
ure 4 evaluates to true iff either node s1, s2, or s6
evaluates true. Node s2 (an and node) evaluates to
true iff s2 is true or s3 and s4 evaluate to true. Node
s3 evaluates to true iff s3 is true or s5 is true.

Assume that the φ+ values of s1 . . . s6 are, respec-
tively, 1, 900, 100, 200, 50, 130, that φ+(s3s4) = 150,

2In the gold-digging metaphor this assumption is made
to (say) prevent the collapse of a parent slice on its child if
the child were excavated first.

and that φ+(s4s5) = 110. If one must commit to an
execution order before search starts, then the choice
would be either s1s2s3s4s6s5 or s1s2s4s3s6s5. Nodes
s2, s3 and s4 appear before s6 because φ+(s2) and
φ+(s3s4) are higher than φ+(s6) and s6 is placed be-
fore s5 because its φ+ is higher.

The ordering between descendants of and nodes is
determined by their p−/c ratios: those with higher val-
ues execute first. Assume for this example, that s3 is
executed before s4 based on this criterion, i.e., the best
a priori strategy is s1s2s3s4s6s5.

Evaluating s3 can produce three results: If s3 eval-
uates true as expected, it is best to continue with the
predetermined strategy. If s3 evaluates false, then s4
and s5 are not evaluated and, hence, the expected cost
of the remaining work is not effected by their relative
location in the strategy. Otherwise, s3 opens its doors
and the strategy profits from a change: node s6 should
now be evaluated before node s4, because its φ+ value
is higher than that of s4s5. Thus, the best ordering
of s4 and s6 is contingent on the results obtained by
evaluating s3.

Summary
We have presented an algorithm that finds optimal
search strategies of and trees and or trees where prun-
ing is modeled. Further, we have shown that optimal
search strategies of and-or trees, and graphs, and or

graphs cannot be represented as static permutations
of the nodes. Consequently, to represent an optimal
search strategy for these latter cases, one must con-
struct a decision diagram that indicates the node to
search next as a function of the outcomes of previous
searches. The construction of such dynamic strategies
is addressed by Slagle (1964) assuming there are no
constraints on the order of node examination. Finding
optimal search strategies subject to order constraints
remains an open problem.

References

Garey M.R. 1973. Optimal task sequencing with prece-
dence constraints. Discrete Mathematics 4:37–56.

Simon H.A., and Kadane, J.B. 1975. Optimal problem-
solving search: all-or-none solutions. Artificial In-
telligence 6:235–247.

Slagle, J.R. 1964. An efficient algorithm for finding cer-
tain minimum-cost procedures for making binary
decisions. Journal of the Association for Computer
Machinery 11:253–264.

445


		2002-03-09T09:22:02-0800
	Culver City
	Jeffrey A. Barnett
	I am the author of this document




