
Module Linkage and Communications

in Large Systems∗

Jeffrey A. Barnett†

System Development Corporation

Santa Monica, California 90202

Abstract

This paper was originally intended to address only the problems
associated with implementing Artificial Intelligence programs. How-
ever, an examination of the trends in Al shows that project teams are
growing in size and becoming multidisciplinary, as they are in other
program development projects. Even though the object of Al research
may be the discovery of an appropriate system organization, the pres-
ence of a large implementation staff strongly suggests the use of highly
modular techniques, the minimization of the number of dependencies
among system components, and the development of techniques for
ensuring that the remaining dependencies are visible.

This paper advocates the use of a formal, executable language to
specify and make visible the dependencies among the modules of a
system. Such a language has been developed to organize the control
monitor for a speech understanding system. In the course of develop-
ing this language, which is called Control Structure Language (csl),
several techniques that aid in organizing systems were explored: Par-
nas modules for representing permanent and semi-permanent data,
software bus structures for dynamic data communication among mod-
ules, and non-guaranteed parallelism. These techniques are reviewed,
and the properties and the use of the language are discussed.

∗Originally appeared in Speech Recognition: Invited Papers Presented at the 1974

IEEE Symposium on Speech Recognition, D. Raj Reddy, editor, Academic Press, 1975,
pp. 500–520, ISBN 0–12–584550–2. A second appendix is added to the original paper.

†Email: jbb@notatt.com

1

Module Linkage and Communications in Large Systems 2

Trends in AI Systems

The field of Artificial Intelligence encompasses a wide variety of activities:
natural language processing, game playing, speech understanding, theorem
proving, visual scene evaluation, symbolic integration, etc. These activities
share the characteristic that they are normally considered to require some
thought or intelligence. However, determining whether a particular activity
is truly AI is not easy; in fact, an old bromide says that if a particular
activity has been well modeled by a computer or if the solution space is well
understood, then the activity is no longer considered a part of AI.

Many early AI efforts were conducted by individual investigators or small
groups concentrating on very specific problems such as game playing. The
major tools developed were heuristic searching and tree-pruning algorithms.
Also, many of the problematic issues were highly computer intensive; for
example, some of the key problems with constructing a chess-playing machine
were such things as how the board is stored internally or how a trial move
sequence or strategy is represented. Such issues led to the development of
many programming languages and systems in which it was easy to represent
a variety of structures: ipl, lisp, comit, etc.

Recently, research and development activities undertaken by the AI com-
munity have changed. Perhaps the most important difference is in the mode
of operation. Large groups and organizations are working on joint projects.
The Speech Understanding Research (SUR) project, organized and spon-
sored by ARPA, is becoming a model (see [9]). Also, the kind of problem
drawing attention is more general. The goal is no longer to automate a class
B chess player, but to construct a speech understanding system or a func-
tioning robot. In these cases, the initial objective for the system is not final;
the ultimate objective may be defined as a system with large bases of diverse
knowledge, having learning (adaptive) capabilities rivaling a human’s. Along
with this open-endedness of goal is a change in primary task to modeling of
human functions: speech, vision, motion, communication (language), gen-
eral problem solving, and combinations of these. In many of these areas,
because so much is known outside the computer and AI community, research
teams have become more interdisciplinary, and techniques other than heuris-
tic search have been brought to bear. In speech and vision systems, for
example, the body of results from signal processing are being incorporated.
Work in computational linguistics is drawing on machine-readable versions
of Webster’s 7th Collegiate Dictionary and Roget’s Thesaurus, etc. These

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 3

developments, taken together, suggest a trend in AI systems work toward
highly interdisciplinary endeavors that involve many people cooperating on
the same project.

Communications in AI Systems

A system that models human intelligence can be said to comprise a set of
Knowledge Sources (KSs). In a computer, a KS is represented as a combina-
tion of data and procedure. Further, the allowable communication paths to
and from a KS must be adequately defined to allow an implementation. For
example, a KS in a chess-playing program may be a module that maintains
the board position; the board itself is represented as some data structure.
The communications with this module are the control actions necessary to
interrogate the present position, update the present position, and save (re-
store) the present position.

In general, the set of allowable communications with a KS will be more
complicated than this and should also be more precise. (For instance, does
this module legality check proposed position updates? Are positions named
by squares or pieces? etc.) In normal system building, a lack of precision
is unforgivable; in an Al system, however, it may be unavoidable because
the discovery of an adequate system organization, and hence communication
network, may be the whole essence of the research. Such questions as “what
should be the interaction between syntax and pragmatics?” or “what is the
contribution of a position evaluator to the total system?” become critical.
In fact, the problem of necessary and sufficient communications, and the
problems of instrumentation and measurement of the contributions of each
KS to total system performance, are becoming the main issues in Al. If
one can accurately specify answers to the above types of questions, then the
activity is no longer considered Al. (New bromide.)

What is a System?

A system (or program) is a collection of procedure and data specifications,
called modules, written in some formal language(s) plus a control structure
for performing an interpretation. In [1], Fisher defines a control structure as
follows:

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 4

By control structure we mean programming environments or op-
erations which specify the sequencing and interpretation rules for
programs and parts of programs.

Fisher goes on to say that any control structure can be described by the use
and amalgamation of six types of control primitives:

1) There must be means to specify a necessary chronological or-
dering among processes and 2) a means to specify that processes
can be processed concurrently. There must be 3) a conditional for
selecting alternatives, 4) a means to monitor (i.e. nonbusy wait)
for given conditions, 5) a means for making a process indivisi-
ble relative to other processes, and 6) a means for making the
execution of a process continuous relative to other processes.

The terms module, process, and data are used to describe systems. A module
is a collection of forms written in some programming language and is therefore
a lexical representation. Included in the collection may be constant data and
specifications for storing dynamic data structures that are either computed
or obtained from the external environment. A module may comprise, besides
its data storage, a set of entry points in the traditional sense of functions,
subroutines, coroutines, etc. Access may also be provided through a macro
facility. Thus, procedural knowledge such as algorithms and heuristics is
embedded into a system as modules.

The term process, on the other hand, refers to a thing in execution;
or, stated differently, a program counter operating an interpretation upon
a module with an associated state is a process. Thus, if our computer has
more than one CPU (program counter), we may have parallel processes. Note
that, if more than one program counter is simultaneously acting on the same
module, then each program counter is associated with a separate process.
Many systems, for example time sharing and multiprogramming systems,
partially achieve the effect of multiple program counters by time slicing a
single processor.

(The distinction between data and procedure in a system is not always
sharp. It may depend upon which level of system description is viewed.
For example, consider the structure of two different recognizers for the same
grammar: One system represents each grammar equation as a tree (a data
structure) that is operated upon by a generalized interpreter. In the other,
each grammar equation is represented as a procedure. In detail, there is

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 5

a definite distinction between these two recognizers: the difference between
data and procedures But viewed as processes in execution, the two are not
distinguishable. And so it is for most procedures; the module may at some
level of interpretation be viewed as data. However this observation should
not inhibit us from noting that there are many instances in which data is not
conveniently or adequately described as procedure. Examples of such data
would be the parameter values passed to an ordinary subroutine, the results
of a computation not conveniently described by a table lookup, or dynam-
ically derived control parameters such as the value of a program counter.
It may be concluded that, even though the distinction between procedure
and data could almost be erased, it is desirable at some levels of system
interpretation.)

Dependencies Among System Components

A system is built from two kinds of components, data and modules. We
do not distinguish private data from the module that owns it. Therefore,
only data (or data paths) visible to more than one module are considered
as system components. A dependency is defined as an order relationship in
time. To say that y depends on x is to say that if the state of x reaches
one of a specified set of configurations, then there will be some effect on y.
There are four general categories of dependencies: (1) process p2 depends on
process p1, (2) data structure d depends on process p, (3) process p depends
on data structures d, and (4) data structure d2 depends on data structure
d1.

Dependency category (1), process p2 depends on process p1, is the best-
understood category of system dependency. The most important examples
of this relationship are

• p1 decides whether p2 should execute,

• p2 needs results (data) produced by p1,

• p3 needs result computed by p1 before result computed by p2,

• p1 is more urgent than p2,

• both p1 and p2 need a common resource whose access methods cannot
tolerate simultaneous use.

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 6

In the last case, it may not matter whether p1 or p2 operates first, only that
some ordering be imposed.

Dependency category (2), data structure d depends on process p, normally
occurs when p calculates an update for d. Category (3), process p depends
on data structure d, has the popular names demon and monitor . In many
ways it resembles an interrupt; that is, if d achieves some unusual shape or
value, then a process is initiated.

Dependency category (4), data structure d2 depends on data structures,
d1, is interesting because it describes a time relationship between data with-
out an explicit, intervening calculation. There are two slightly different cases
of category (4) dependencies. First, the same information is kept in multiple
copies; thus, if the information is updated at one location, then it may need
to be updated at its other locations. Second, some information may be stored
as a common substructure of several data structures, and any update to the
common portion will be simultaneously reflected in all the parent structures.

Management of Dependency

In the above discussions, we have talked about dependencies involving pro-
cesses and dependencies involving modules without making a distinction.
Strictly speaking, we should have mentioned only dependencies involving
processes, because the ordering was on execution, a property of processes.
However, this misses an important problem with system construction. It is
that people code modules not processes. And, if a group is working on a
program together, they will make assumptions about and use each others’
work. In [2], Parnas says,

The connections between modules are the assumptions which the
modules make about each other.

These assumptions may cover many types of dependencies not included in
the four categories outlined above. Some examples are

• Subroutine s in module m performs a specific task.

• Data structure d has a certain format.

• The name of an entity is n.

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 7

• Subroutine s may be used recursively.

• Module m has an unfixed bug. (!)

There are two opposing viewpoints on the desirable amount of inter-module
dependencies (or connections). The first, attributed to Minsky is called ver-

ticality and has special significance to AI systems. It assumes that to model
a complex process on a computer, it is necessary to have as much flexibil-
ity as possible in interconnecting sources of Knowledge (KSs) at whatever
level of detail is necessary. (This kind of organization is sometimes called
a heterarchy.) The other viewpoint states that a system with too many in-
terconnections is hard to change and impossible to debug. Therefore, it is
important to compartmentalize knowledge in a system, thus minimizing in-
terdependencies. This approach is often called modularity. The argument for
verticality is based upon modeling of complex processes, while the argument
for modularity is based upon practical considerations of system development.

In recent years, several programming language systems have been created
to better support vertically integrated systems: planner, micro planner,
q-lisp, and conniver are a few. So there are some definite feelings that
verticality is important. However, most reported uses of the above systems
or concepts have involved a single investigator or a small implementation
team. (See [3] and [4] for some examples.) The advantages of verticality are
that knowledge is not hidden and that real-world activities can be modeled
within a natural structure. The problem is that the degree of dependency
is large, and therefore the resulting system is hard to instrument or change.
Further, the control structure may be quite complex, making it very difficult
to follow program flow.

There are several arguments for modularity: the initial design task is
relatively straightforward; it is easy to change the details of implementation;
the control structure, on the level at which the system is modularized, can
be fairly simple; and, as a side effect of the latter, it should be possible to
document the system easily. The disadvantages of the modular approach
are that the system architecture may be or may become rigid and therefore
mask essential knowledge and communication. This happens when too much
attention is given to the modularization and not enough to the problem at
hand. Also, subcomponents may be duplicated.

The choice between the use of a modular or vertical strategy can be
most difficult. The difficulty is that the virtues of each are desirable and
complementary. Verticality is a more flexible structure, and modularity is a

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 8

better organization for working. However, if a system is to be implemented by
a large group of people, the modular approach is a clear winner. The ability
to divide the work effort and specify the available interfaces is essential when
the efforts of more than two or three people are involved. With the trend in
AI systems towards larger groups working on the same project, we will see
growing use of modularity. Verticality will be reserved for use by individuals
or small groups searching for appropriate representation strategies, and it
will probably be their efforts that point out some new directions for the
development of larger systems.

In [2] and [5], Parnas suggests criteria for decomposing systems into mod-
ules. The basic idea is that a module should comprise the total knowledge
of the system about some closely related set of design decisions. In the first
section of this paper, a module for maintaining the status of a chess game
was briefly mentioned. The external interfaces were functional, but using
them made no assumptions about the actual representation of the board.
Thus, the design decision hidden by this module was the selection of the
board’s representation. The merit of the Parnas criterion is that it reduces
the amount of global knowledge necessary to program parts of a system be-
cause communications, and hence interdependencies, are well defined.

The idea of hiding a design decision is useful when applied to data but not
so useful when applied to a procedural module. If the hidden design decision
is the module’s algorithm, then we have not really hidden very much. (How
often can the user of a fast Fourier transformation routine make use of the
fact that the computation is radix 4 instead of radix 2?)

Maintenance of data, on the other hand, is the prime candidate for the
use of the Parnas approach. Examples of some good decisions to hide away
are

• Is data kept in core or on disk?

• Is data tabular or computed?

• What is the format of the data?

• Is structure shared?

• Is the representation unique?

If communication with data is through functionals, the above kinds of design
decisions do not have to become public, and we avoid global trouble when
one of the decisions is changed.

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 9

The kinds of functionals necessary to communicate with a data store are
update functionals to change, add, and delete items, and interrogation func-
tionals to retrieve items or relationships about the data. These functionals
can be implemented as functions, as macros, or even parametrically, as long
as their exact inner workings do not need to be known. Two additional
functionals should be provided for completeness: an initializer and a closer,
both of which may perform no operation for many data stores. Since the
possibility of storing data outside main memory is allowed, and since many
operating systems require open and close catalogue calls for each file used,
the initializer and closer can be used for these purposes. Even for data kept
in main memory, the initializer can be used to lay out storage or compute
initial values. The programming system in which the data is embedded calls
the initializers for all stores at the start of program execution and the closers
at the end.

Features of Data

In this section, some features of data will be examined. In particular, we will
look at the usage, longevity, ownership, and visibility of data. (The structur-
ing and formatting problems covered by Standish in [6] are not discussed.)
The particular features selected for examination were chosen because they
may have a major impact on the organization and modularization of a sys-
tem.

In a system, a collection of data is usually known by name. Many times,
the name of the collection is the same as the name of the module that provides
the access paths to the members of the collection. We will assume that
knowing the name of a collection is equivalent to begin able to access members
of the collection. A distinction is to be made between a data name (or
collection) and a structure. A structure is a single, static entity. A name
may refer to different sets of structures at different times, e.g., the name,
PRESENT.WEATHER.CONDITIONS, will refer to different weather conditions at
different times. Thus, the access function, TEMPERATURE, does not refer to a
particular datum, but is more correctly a data path into the collection.

Data structures and collections are used for many purposes. A partial
list of usage categories is

• control information,

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 10

• argument passing,

• result passing,

• accumulation of state of computation,

• representation of procedure,

• information pooling (data bases).

Data longevity refers to the amount of time a collection holds data structures.
Thus, longevity is a property of a collection, not a structure. There are three
useful categories of longevity: dynamic, permanent, and semi-permanent.
Examples of dynamic data are control information and argument and result
passing. In most system organizations, dynamic data does not receive a
name (except through bound variables local to a particular module). It is
created and passed to its ultimate destination then it disappears from the
system. Permanent data usually appears in the form of lexicons or data bases
that are not ordinarily updated by operating the system. Semi-permanent
data collections have the property that updates may occur, but entrance of
a now member does not automatically delete old members. An example of
a semi-permanent data collection in a speech system would be a memory of
each word that has been successfully recognized in an utterance. As new
words are found, they are added to the collection and remain there for the
duration of the processing of the utterance. Before work is started on the
next utterance, the collection is cleared.

Data ownership and data visibility are discussed together. To say that
data collection d is visible to system component c (c knows d’s name), can
mean either that d depends on c or that c depends on d. If we use the
modularity approach for maintaining data in a system, then the owner of
the data is the module that allocates storage and provides the access paths.
We can now say that a collection is private (or local) if it is visible only
to its owner, and a collection is public (or global) if it is visible to at least
one module that is not its owner. Being public does not necessarily grant
access privileges to all system components. In fact, it is a basic part of the
modularity philosophy that the system design should severely restrict the
visibility (hence dependencies) of any components to those that have a need

to know. As defined here, ownership and visibility are properties of modules.
In general, permanent and semi-permanent data are global and are ap-

propriately implemented as modules. A problem arises when one attempts

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 11

to define ownership and visibility of dynamic data, because it is not natural
to implement it as a module. (For example, the control and state parameters
of a process belong to the process, not to a particular module.) Moreover,
the unit of interest is a data structure, not a collection. (This is the case for
subroutine arguments and values.) Further, because knowing the name of
data is equated with its visibility, we can conclude that most dynamic data
is invisible in the system, and private to its sender and receiver (or its single
user).

Dynamic Data Visibility

There are times when it is appropriate to make dynamic data globally visible.
A particular case is broadcasting information and requests among Knowledge
Sources (KSs). Above, an example was given of a semi-permanent data col-
lection in a speech system that remembers recognized words in an utterance.
As various modules locate words in the utterance, they ship the words along
the LOCATED.WORD data path to the storage module. In normal use, the
KSs could interrogate the store to see if a particular word has already been
located. It is also appropriate to broadcast the information placed on the
LOCATED.WORD data path to various KSs. For instance, this would be a rea-
sonable way to wake up (or create) a bottom-up parsing process. As another
example, a top-down parsing process could broadcast a request for a partic-
ular word without consideration of who should respond. If the word had not
been previously located, a word recognizer would examine the acoustic data
and report results along the LOCATED.WORD data path.

The broadcasting technique described above closely resembles an impor-
tant control structure capability provided by some program language systems
for implementing vertically integrated systems. In particular, request broad-
casting is the major linkage method, e.g., goal specification in planner. The
request receiver (as opposed to the request) is named. Thus, the catalogue
of data paths is the set of routine names. Changes to the system at almost
any level of detail change this catalogue. Such changes represent a major
type of design decision. Obviously, this should not be allowed to happen on
a day-to-day basis when the implementation staff is large.

An alternative can be used to preserve some of the flexibility inherent
in the broadcast invocation strategy: name a few major data paths; for
each path, specify the KSs that should operate whenever an item traverses

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 12

that path; augment the control to create a process for each specified KS
whenever the path is used. There are two important differences between
this and the goal-invocation approach. First, the data paths as well as the
receiving KSs are named, making them global. Second, a process depends on

a process dependency has become a process depends on data dependency. If
the path name is made global, hence visible, the inter-KS communication can
become a specified and integral part of the system design and a candidate
for instrumentation and measurement studies. Also, the process depends on

data dependency seems more natural.
An analogue to this strategy for making dynamic data visible is imple-

mented in computer hardware as buses. A bus is a data path to which
modules are connected. It is usually the case that the modules do not have
to know each other’s names. Requests and information are broadcast on the
bus. Each module examines the data and can do something with it or disre-
gard it. Therefore, we may call the above system technique for broadcasting
dynamic data software busing.

Parallelism

Intuitively, parallelism means that two or more processes are operating si-
multaneously. Figure 1 shows a single process splitting into two parallel
processes, a and b, which then rejoin to make a single process. Process a

comprises the four sequential steps a1, fa=a1, wait until fb eq 1, and
a2. Process b comprises the four sequential steps b1, fb=1, wait until fa

eq 1, and b2. The numbered steps are assumed to be total; that is, a1,
a2, b1, and b2 are all finite calculations for any set of external conditions.
Clearly, the processing scheme shown in Figure 1 will not itself be total unless
there is some guarantee of parallelism. If a sequential interpreter attempts
to operate one process to completion (run a to end, then b, or vice versa),
Then a block will occur on the wait operation because the other process has
not been able to unlock the control flag, either fa or fb.

The facade of guaranteed parallelism may be achieved by a variety of
techniques. If multiple program counters exist, they may be organized in a
network or as a multiprocessor where each CPU shares a memory and other
resources. The method of performing parallel processing on a sequential
computer with a single program counter is called interleaving. The concept
of parallelism in such an arrangement is guaranteed at only some levels of

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 13

START

fa=0
fb=0

✟✟✟✟

❍❍❍❍

a1 b1

fa=1 fb=1

wait until wait until
fb eq 1 fa eq 1

a2 b2

❍❍❍❍

✟✟✟✟

END

Figure 1: Example Flow

interpretation. Thus, in Figure 1, a single processor could switch back and
forth from process a to b after completing one of the four steps in either
process. In fact, process switching is necessary only when an unsatisfied
wait operation is encountered. Thus, at the level shown in Figure 1, we
must guarantee parallelism. However, there need not be a guarantee that
al and bl will be operated simultaneously. The control structure needs to
guarantee only the facade of parallelism, and then only at particular levels of
interpretation. The levels are only those in which synchronization operations
(such as the wait) are present.

Two issues raise the question of whether parallel processing is worth
thinking about in system design. First, almost no one has actual equip-
ment available that is capable of doing real multiprocessing. Second, even
if the equipment were available, the use of a parallel control structure in-
troduces extra dependencies into a system in the form of synchronization
operations. These extra dependencies are of an implementation variety and
may have little to do with the problem-level intercommunications of the KSs.
Since our general conclusion is that the number of dependencies (communi-
cations paths) in a system should be kept to a reasonable minimum, it may
be inferred that parallelism is inappropriate in systems developed by large
groups.

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 14

Non-guaranteed parallelism is a technique that has advantages in a con-
trol structure and does not run into the above objections. As the name
implies, non-guaranteed parallelism does not promise to operate active pro-
cesses simultaneously. The only guarantee is that, when an unsatisfied wait
is encountered, some other process(es) not at an as yet unsatisfied wait will
continue, start, or resume processing. The only legal inter-process order de-
pendencies are those that occur in conjunction with explicit synchronization
operations. Thus, guaranteed parallelism in the control regime of one level
of system description cannot be hereditary to lower levels unless these levels
also have synchronization primitives. When guaranteed parallelism is con-
fined to higher levels of description, many inter-dependencies are “bubbled”
outward and become visible or disappear.

The advantages of this approach are numerous. The number of explicit
dependencies is reduced and the implicit, undocumentable dependencies are
forced to disappear or become explicit at a higher level. Unexpected, implicit
dependencies will eventually show themselves as software “race” conditions
when parallelism is used in a system. The manifestation is usually that the
same initial state produces different results. Even though this is not desired,
it has a good effect. It forces the implementers and designers of a system
to look for a cause, and this may lead to the discovery of a necessary but
overlooked relationship among the KSs. If parallelism, of some sort had not
been used, the implementers would have selected some arbitrary sequential
ordering and the problem may or may not have appeared. If it had not,
then a discovery experience would have been missed. If the problem had
occurred, it would have been solved by switching the order of a few statements
rather than by analyzing the problem in sufficient depth. Thus, the use
of parallelism is a motivator to understanding a system. Non-guaranteed
parallelism preserves this characteristic and has the advantage of reducing the
number of implicit and explicit dependencies. It allows efficient simulation
on single CPU computers. (The use of a randomizing technique for selecting
among the eligible execution paths ensures that implicit dependencies, if
present, have an opportunity to appear.)

Levels of System Description

Throughout this paper, reference has been made to levels of system descrip-
tion, levels of representation, and levels of interpretation. The relationship

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 15

between these three concepts and the concepts themselves are vague because
they have many different intuitive connotations. My personal preference
defines level of description in terms of representation and interpretation as
follows:

A level of system description is a representation of the system
which allows an accurate simulation of the system to some level
of detail. The simulator or interpreter for a level of description is
the realization of the control structure for the representation.

Thus, a level of description implies that the system can be simulated, which
in turn implies the existence of a language for the representation and a control
structure for that language.

The concept of level implies a hierarchy. For something as complex as
a large program, there exist a variety of choices for the set of description
levels. Some choices are more natural than others because they arise as steps
in the evolution of the system design. Normally, the first level of system
description is a diagram of the major components and dependencies. The
control structure for interpreting the diagram is usually prose and informal.

The next iteration of the system design identifies the KSs that the system
comprises. Data and process dependencies are also identified. At this level,
a KS receives a name that reflects a problem-level label such as pragmatics,
parser, eye, etc. Following this, the most crucial system description is at-
tempted: the definition of modules. The importance is obvious because each
defined module becomes a work assignment for one or perhaps two people. It
is also at this level that all global dependencies must be defined and external
module specifications created.

The bottom-most set of levels comprise program language forms organized
into layers of subroutines and functions. These are the only levels for which
there generally exist a formal representation and a control structure. The
KS and module level are not formalized. Probably the best representation of
the KSs and their interdependencies is a diagram with adequate explanation.
However, this lack of accurate representation should not exist at the module
level. In [2], Parnas argues strongly that all global dependency decisions be
documented at this level and form the basis for individual work assignments.
However, this is not enough. For a variety of reasons, the module level should
be described in a formal, executable language that acts as the system control
monitor. The most important reasons for formalizing the module level are
the enhancements of the abilities to instrument and measure the system’s

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 16

performance, debug the system, change the system in a way that affects
the least number of people, and test the system for compliance with the
design specifications. All of these benefits accrue because a control monitor
can create and order executable processes and can supervise the global data
paths. It is at this level that the system description can best be augmented
with test facilities.

A Module-Level Description Language

Ritea in [7] and Barnett in [3] describe a speech understanding system im-
plemented at System Development Corporation in Santa Monica, California.
The system accepts spoken utterances in a formal data management language
that has a vocabulary of approximately 150 words. Users’ questions are in-
teractively answered, reports may be formatted, and the user may request
help in understanding the system or the data base.

The system operates on an IBM 370/145 computer with the acoustic
preprocessor operating on a Raytheon 704 computer. The organization of
the system at the module level was accomplished using a control monitor
language. The language is named Control Structure Language, csl. csl

facilitated the use of the techniques mentioned above such as software buses,
parallelism (guaranteed in csl, non-guaranteed in the modules), visible dec-
laration of dependencies, and “Parnas” modules for data storage. Three
kinds of system components may be declared: buses, common (global) stor-
age modules, and processing modules. The functional data paths to a com-
mon storage module are also specified and include: initializer, closer, updater,
and interrogators.

A processing module has a single entry point, receives no arguments,
and returns no value. All external communication must be over the buses
or through the common storage modules. A processing module declaration
includes the names of the buses and common storage modules it reads, and
the names of the buses and common storage modules it writes. This is
sufficient information to construct a data-dependency graph of the system.
Alias names may also be declared for processing modules to allow a variety
of usages in the system.

Besides passive declaration of major components, csl provides for a de-
scription of program flow and order dependencies. The set of invocation
primitives are; conditional, sequential, parallel, and fork. FORK L creates

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 17

a process starting each place the label L, appears. Additional flow synchro-
nization is accomplished using AFTER forms, BEFORE forms, and labels. AFTER
waits for a specified set of processing modules to complete execution. BEFORE
causes a specified sequence of preceding events to happen each time a spec-
ified module is activated or before a fork to a specified label is completed.
BEFORE is normally used for debugging and instrumentation. Labels may be
placed singly or in groups. Processing does not start at a label until a fork
to each label in the group has occurred.

Two data-synchronizing operations are present in csl. First, CYCLE clears
visible data structures from the specified buses and places new items, ac-
cumulated by operating processing modules, on the buses. Second, UPDATE
passes the data structures accumulated since the last update for this common
storage module to the update functional given in the common declaration.

Debugging facilities include trace and breakpoint capabilities. Also, a
system monitor written in csl may bind variables and operate expressions
written in lisp. csl was implemented as a language extension of the SDC
lisp Infix Language and operates in three phases: compile, graph linking,
and run-time control monitor execution. The appendix to this paper contains
a brief description of csl.

Experience with the use of csl for organizing a speech system has con-
firmed the desirability of having a formal description level for modules and
their interdependencies. Several experiments have been performed where one
or more modules were deleted from the system and performance measured to
determine their contribution. This was accomplished without disturbing the
interior of any module; only the csl system description was modified. It has
been possible to debug each module in isolation by using csl to configure a
test facility specifically suited to testing that module. Another benefit has
been the ability to borrow modules from the system in order to manufacture
other programs quickly. Also, as the system has been used, the dependencies
and flow have been altered to improve performance. In no case was a module
reprogrammed; the changes were reflected only at the csl description level.

Acknowledgements

I wish to thank Douglas Pintar who worked on the implementation of csl
and who made many valuable contributions to the design of the language. I
also wish to thank John Luke for his help in organizing and improving this

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 18

paper.
This research was supported by the Advanced Research Projects Agency

of the Department of Defense under Contract Number DAHC15–73–C–0080.

References

[1] Fisher, D. A., Control Structures for Programming Languages, Doctoral
Dissertation, Carnegie-Mellon University, May, 1970.

[2] Parnas, D. L., Information Distribution Aspects of Design Methodology,
Information Processing 71, North-Holland Publishing Company, 1972,
pp. 339–344.

[3] Miller, P. L., A Locally-Organized Parser for Spoken Input, Doctoral
Dissertation, Massachusetts Institute of Technology, March, 1973.

[4] Winograd, T., Procedures as a Representation for Data in a Computer

Program for Understanding Natural Languages, Doctoral Dissertation,
Massachusetts Institute of Technology, February, 1971.

[5] Parnas, D. L., On the Criteria to be Used in Decomposing Systems into
Modules, Communications of the ACM, December, 1972, Vol. 15, No. 12,
pp. 1053–1058.

[6] Standish, T. A., A Data Definition Facility for Programming Languages,
Doctoral Dissertation, Carnegie-Mellon University, May, 1967.

[7] Ritea, H. B., A Voice-Controlled Data Management System, Con-

tributed Papers of IEEE Symposium on Speech Recognition, April, 1974,
Carnegie-Mellon University, Pittsburgh, Pa., pp. 28–32.

[8] Barnett, J. A., A Vocal Data Management System, IEEE Transactions
on Audio and Electroaccustics, Volume AU–21, Number 3, June, 1973,
pp. 185–188.

[9] Newell, A., et al., Speech Understanding Systems: Final Report of a

Study Group, Published for Artificial Intelligence by North-Holland /
American Elsevier, 1973.

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 19

APPENDIX: CSL Language Description

By example, several kinds of csl statements and language forms are intro-
duced. Declaration statements are presented first, followed by the flow and
synchronization primitives.

Declaration Statements

Buses, common storage modules, and processing modules can be declared in
csl.

Bus Declarations

Bus declarations are introduced by the word, BUS, followed by a sequence of
bus names. To declare B1, B2, and B3 buses, write:

BUS B1,B2,B3;

Common Storage Module Declarations

Common storage module declarations are introduced by the word, COMMON,
followed by a declaration for each common storage module:

COMMON X(XI,XU,XC,XA1,XA2),

Y(YI,YU,UC,UA1,YA2,YA3);

In this example, X and Y are declared as common storage modules. XI, XU, and
XC are the names of the initalizer, updater, and closer functions, respectively,
for X. XA1 and XA2 are the name of the interrogators. YI, YU, and YC are the
names of the initalizer, updater, and closer functions, respectively, for Y. YA,
YA2, and YA3 are the interrogators. All access functions are specified by
function or macro names.

Processing Module Declarations

Processing module declarations are introduced by the word, MODULE, followed
optionally by the specification of alias names, data input-names, and data
output names:

MODULE M ALIAS(MI,M2) READ(Bl)(X,Y) WRITE(B2,B3)(X);

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 20

The module, M, may also be referenced as M1 or M2. M reads from bus B1 and
writes on buses B2 and B3. M reads and writes common storage module X

and reads common storage Y.

Flow and Synchronization Forms

Flow and synchronization control forms are built up from the names of buses,
common storage modules, processing modules, labels, and expressions writ-
ten in LISP Infix language. The interpretation of a processing module name
is an execution of that module. Label definitions may be made either singly
or in groups. The label name(s) is surrounded by asterisks. Thus, to place
the group of labels L1, L2, and L3 at some spot, you write

LI,L2,L3

In order for a process to be initiated at or continue through a label group, a
fork to each label must be executed.

The AFTER primitive forces a wait until a specified group of processing
modules have been executed. To wait on modules M1 and M2, write:

AFTER(MI,M2)

FORK

A fork to label L is written

FORK L

FAKE

A FAKE form tells the control monitor to initiate all activity dependent on a
processing module without first executing the module. To “fake” the execu-
tion of M, write

FAKE M

Conditional

A conditional form is written in standard if-them-else format with the else-
clause optional. The predicate is any expression written in LISP Infix lan-
guage. The conditional,

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 21

IF P EQ Q THEN M1 ELSE M2

executes M1 if the value of P equals the value of Q. Otherwise, M2 is executed.
The then-clause and the else-clause may be any flow or synchronization form
except a BEFORE statement.

Parallel and Sequential

To operate a set of forms in sequential order, write the forms enclosed in
parentheses. To operate a set of forms in parallel, write the forms enclosed
in square brackets.

[(A,B), (C,D,E)]

The above will initiate two parallel processes. One process consists of the
sequential execution of the processing modules A and B in that order. The
other process is the sequential execution of the processing modules C, D, and
E in that order.

Top-level csl statements are assumed to specify a sequential ordering
within the statements so that the outer parentheses may be dropped. No
ordering among statements is implied by their lexical order of appearance;
therefore, each control flow statement must begin with a label definition or
an AFTER form. The control monitor always begins execution by forcing a
FORK START.

BEFORE Statement

A BEFORE statement specifies a sequence of events that should happen before
a processing module is executed or before a fork to a label is completed.

BEFORE M X,[Y,Z];

When M would normally be executed, the sequence of events is: execute X,
operate Y and Z in parallel, and then execute M.

CYCLE

Execution of a CYCLE form discards data items presently on the named buses
and makes new data items visible. To cycle buses B1 and B2, write

CYCLE(B1,B2)

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 22

UPDATE

Execution of an UPDATE form passes their accumulated updates to the named
common storage modules. To update data collections X and Y, write

UPDATE(X,Y)

BREAK

A debugging breakpoint may be specified using the BREAK form. The body
of the BREAK is an expression written in lisp Infix language. When executed,
all processes are immediately suspended, the expression is evaluated and its
value is printed on the interactive terminal, identification of the suspended
processes is printed, and a debugging supervisor is entered for interaction
with the user. To create a breakpoint which outputs the message HELLO,
write:

BREAK "HELLO

STOP

Execution of a STOP form immediately terminates all processing and return
to the lisp supervisor. A STOP form is just the word, “STOP”.

Data Functions

The csl run-time package provides modules with three functions for access-
ing the data paths: GETBUS, PUTBUS, and PUTCOM. Other accesses are made
through the interrogators declared with the common storage modules.

GETBUS(bus-name)

The argument to GETBUS is the name of a bus. The value is a list of the data
structures on the bus.

PUTBUS(bus-name, data-structure)

The arguments to PUTBUS are the name of a bus and a data structure to put
on that bus. The new value becomes visible the next time the bus is cycled.

PUTCOM(common-storage-module-name, update)

In Speech Recognition, D. Raj Reddy, editor, 1974, 500–520

Module Linkage and Communications in Large Systems 23

The arguments to PUTCOM are the name of a common storage module and an
update (data structure) for the named module. The accumulated updates
are passed to the update function specified in the module declaration the
next time an UPDATE form addresses the module.

APPENDIX: Postscript September, 1999

The 1974 paper did not include an example of the csl language. That
omission is rectified in this supplementary appendix. The example below is
an encoding of the control monitor for the Predictive Linguistics Constraints
(PLC) speech understanding system described by Barnett [8] and Ritea [7].
A reasonably accurate figure, showing data flow paths, appeared in [8] and
is reproduced here as (the second) figured numbered 1.

The example csl code was typeset by using an HP 5100 scanner to convert
a 25 year old listing into ASCII, then that data was hand edited. Three
language features not described in the prior appendix appear: The first is
GO which does the obvious, i.e., it acts just like FAKE to a label that is not
a module. The second feature is EVAL which evaluates the following form,
written in lisp Infix language, for effect. The third is a BIND statement which
binds local variables for use within the csl form.

Figure 2 shows the control flow paths that emanate from the label post.
Of special interest, is the handling of the AFTER form and its interaction
with nested series and parallel computations. That piece of the PLC system
does post-utterance recognition tasks including answering the user’s query,
updating the information available to the cross-sentential semantics modules,
and interacting with the user as required. Note, when multiple arrows point
at a computation, control must traverse all of them before that computation
can commence; thus, the situation represented is a join operation.

The PLC example follows next. Note, the control monitor, like a normal
subroutine, can receive arguments. Here, these arguments are used to control
user-interface interactions and allow for the processing of canned scripts.

CONTROL plcvdms(talk.p, dcnt, dialogue)

BIND sud;

BUS pmeta, pword, pclass, phole;

BUS fmeta, fword;

Addendum to the original added in September, 1999.

Module Linkage and Communications in Large Systems 24

BUS sud, response;

BUS message;

COMMON cequ(cequ.i, cequ.u, cequ.i, cequ.g),

sequ(nop, nop, nop, sequ.g, r2e);

COMMON lwrd(lwrd.i, lwrd.u, lwrd.i, lwrd.g),

lmta(lmta.i, lmta.u, lmta.i, lmta.g);

COMMON wnxt(wnxt.i, pwnxt.u, wnxt.i, wnxt.g),

mnxt(mnxt.i, mnxt.u, mnxt.i, mnxt.g);

COMMON vocab(nop, nop, nop, spell, cwiper.g),

phone(nop, nop, nop, phone.g);

COMMON conc(nop, nop, nop, dbi.g, dbv.g,

Addendum to the original added in September, 1999.

Module Linkage and Communications in Large Systems 25

post

❄
CYCLE(pmeta, ... ,fword)

❄
dms

❄

✏✏✏✏✏✏✏✏✏✏✏✮
tmsp

❅
❅

❅❘

CYCLE(response)
✚

✚
✚

✚
✚

✚
✚

✚❂ ❄

❳❳❳❳❳❳❳❳③
output

❄
tmrp usmx CYCLE(message)

❄ ❄ ❄
UPDATE(wnxt) UPDATE(mnxt) say1

❳❳❳❳❳❳❳❳③❄

✘✘✘✘✘✘✘✘✾
CYCLE(pmeta, ... ,fword)

❄
"(logout) IN sud?

✟✟✟✟✙

❍❍❍❍❥
GO fin GO loop

Figure 2: Control flow after label *post*

dbd.g, aname.g, sname.g);

COMMON talk(talk.i, talk.u, talk.e),

db(db.i, nop, db.i);

MODULE dms READ(sud)(sequ, db, conc) WRITE(response)();

MODULE synt READ(pmeta)(sequ, lmta)

WRITE(fmeta, pmeta, pclass, pword)();

MODULE syns ALIAS(xsyns) READ(phole)(sequ, conc)

WRITE(fmeta, pmeta, pclass, pword, sud)(lmta);

MODULE synb ALIAS(xsynb) READ(fmeta)(sequ, cequ, conc)

WRITE(phole)();

MODULE clsf ALIAS(xclsf) READ(fword)(conc)

Addendum to the original added in September, 1999.

Module Linkage and Communications in Large Systems 26

WRITE(fmeta)(lmta);

MODULE tmrp READ(sud, response)() WRITE()(wnxt);

MODULE tmsp READ(sud)(sequ, conc) WRITE()(wnxt);

MODULE tmxx ALIAS(tmpp) READ()(wnxt) WRITE(pword)();

MODULE usmp READ()(mnxt) WRITE(pmeta)(cequ);

MODULE usmx READ(sud, response)(sequ) WRITE()(mnxt);

MODULE cwiw ALIAS(cwiper)

READ(pword)(lwrd, talk, phone, vocab)

WRITE(fword)(lwrd);

MODULE cwix ALIAS(cwipex)

READ(pclass)(lwrd, talk, phone, vocab)

WRITE(fword)(lwrd);

MODULE output READ(sud, response)() WRITE(message)();

MODULE say ALIAS(say1,say2) READ(message);

start EVAL wcnt=initcount(), GO loop;

loop IF NODEP(talk.p) OR dcnt LQ 0 THEN UPDATE(talk),

EVAL [lwrd.i(), lmta.i()]

[(usmp, CYCLE(pmeta), UPDATE(cequ)),

(tmpp, CYCLE(pword))],

IF dcnt EQ 0

THEN (BREAK "cwiper.start.up, EVAL dcnt=-1, GO norm)

ELSE IF dcnt LS 0 THEN GO norm

ELSE (EVAL [PUTBUS("sud, CAR(dialogue)),

sud=LIST(CAR(dialogue)),

dialogue=CDR(dialogue),

dcnt=dcnt-1],

CYCLE(sud),

GO post);

norm [synb, synt, syns, clsf, cwiper, cwipex],

CYCLE(pmeta, pword, pclass, phole, fmeta, fword, sud),

UPDATE(lwrd, lmta),

GO check;

check IF sud=GETBUS("sud)

Addendum to the original added in September, 1999.

Module Linkage and Communications in Large Systems 27

THEN (BREAK "(you said)@CAR(sud)), GO post)

ELSE IF GETBUS("fword) OR

GETBUS("fmeta) OR

GETBUS("phole)

THEN ([xsynb, xsyns, xclsf],

CYCLE(fword, fmeta, phole, sud),

UPDATE(lword, lmta),

GO check)

ELSE IF GETBUS("pmeta) OR

GETBUS("pword) OR

GETBUS("pclass)

THEN GO norm

ELSE (CYCLE(pmeta, pword, pclass),

IF GETBUS("pmeta) OR

GETBUS("pword) OR

GETBUS("pclass)

THEN GO norm

ELSE GO erro);

erro BREAK "no.comprendo,

CYCLE(sud),

IF NOT (sud=GETBUS("sud))

THEN GO erro

ELSE GO post;

post CYCLE(pmeta, pword, pclass, phole, fmeta, fword),

[(tmsp, AFTER(tmrp) UPDATE(wnxt)),

(dms, CYCLE(response),

[tmrp,

(usmx, UPDATE(mnxt)),

(output, CYCLE(message), say1)])],

CYCLE(pmeta, pword, pclass, phole, fmeta, fword),

IF "(logout) IN sud

THEN GO fin

ELSE GO loop;

fin EVAL [FOR x IN "(mcnt bcnt ccnt wcnt), i=10 STEP 10

DO prx(x, i), TERPRI()],

Addendum to the original added in September, 1999.

Module Linkage and Communications in Large Systems 28

EVAL [prx(mcnt,10), prx(bcnt, 20), prx(ccnt,30),

prx(wcnt, 40), TERPRI()];

STOP;

END;

Addendum to the original added in September, 1999.

