
Intelligent Reliability Analysis

Jeffrey A. Barnett & Tom Verma∗

Automation Sciences Laboratory
The Northrop Corporation

Pico Rivera, CA 90660

Abstract
An ideal automated reliability analysis system would

take a CAD model as input, then identify critical
components and output failure probabilities. Unfor-
tunately, the practical systems in use today require a
fault tree—a kind of and/or graph—as their input.
Since the cognitive distance between the CAD model
and its associated fault tree is large, the manual trans-
lation step is a source of many mistakes. Furthermore,
the use of fault trees makes it difficult to handle the
cyclical dependencies that naturally occur among sys-
tem components. The functional dependency graph, a
representation midway between CAD models and fault
trees, is described below and methodology that auto-
mates reliability and diagnostic analyses is developed.
When the resultant technology is employed, the knowl-
edge burden is more equally shared between the user
and the computer. In addition, more complicated sys-
tems can be properly analyzed because cyclical depen-
dencies can be represented.

1 Summary
A reliability analysis produces, from a system de-

sign, a list of its critical sets and the probability that
the system will fail to perform specified missions. A
critical set is a set of system components that satis-
fies two conditions: (1) the system necessarily fails if
all elements of the critical set fail and (2) no proper
subset of the critical set satisfies the first condition.
Small critical sets represent potential vulnerabilities
that can easily be triggered by outside influences. Bat-
tle damage to a critical weapon system component is
an example.

The results of reliability analyses are used through-
out the system life cycle. During product engineer-
ing, the data is used to improve designs; for example,
an engineer may increase redundancy to decrease the
number of small critical sets. Later, the analysis is

∗Verma’s current address is Tudor Investment Corporation,
New York, NY 10006. Email addresses of the authors are
jbarnett@nrtc.northrop.com and verma@tudor.com.

used to determine the appropriate size of the spares
inventory and to form diagnostic plans.

The next section is a brief introduction and an
overview to the portions of reliability analysis relevant
to this article. The interested reader is referred to two
classics for additional information: Amstadter [1] and
Barlow, et al [2]. Current approaches are described in
the IEEE Transactions on Reliability Analysis and in
the proceedings and tutorial notes of the yearly An-
nual Reliability and Maintainability Symposium. Bar-
nett and Verma [3] develop many of the results that
appear below.

Section 3 identifies several problems with current
practice: the required input is difficult to prepare and
the source of many errors, a system and each of its sub-
systems require separate analyses, and conventional
methods do not adequately handle cyclical dependen-
cies. Section 4 defines a new representation, the func-
tional dependency graph, that addresses these prob-
lems and Section 5 discusses issues of dependency cy-
cles in more detail. Section 6 provides computational
methods and, finally, Section 7 discusses current status
and future directions. This paper combines AI tech-
niques, used in theorem proving and logic program-
ming, with conventional reliability practice in a way
that extends our ability to analyze complex systems.

2 Remedial Reliability Analysis
The prototypical reliability analysis proceeds in

four steps:

1. Determine component failure probabilities as a
function of system missions.

2. Represent component dependencies by a fault
tree—a structure defined below.

3. Enumerate critical sets from the fault tree.

4. Calculate system failure probabilities from the
component failure probabilities and the list of
critical sets.

In Proc. Tenth IEEE Conference on Artificial Intelligence for Applications, San Antonio, 1994.



∨-

6

¾

∧ ∧ ∧

6
³³³³³³1

PPPPPPi
³³³³³³1

PPPPPPi 6

Φ1

∨
Φ2

∨
Φ3

∨- - -

6 6 6
∧ ∧ ∧

6
³³³³³³1

PPPPPPi
³³³³³³1

PPPPPPi 6

β1 β2 β3

Figure 1: Fault tree for a redundant circuit.

The first step typically uses assumptions such as that
missions can be parameterized by their duration and
that component failure probabilities have exponential
distributions, e.g.,

p(c) = 1− e−λcT ,

where c is a component, λc is its failure rate—the re-
ciprocal of mean time to failure, and T is mission dura-
tion. The λ terms are found in engineering handbooks
or by testing.

The second step is to represent system dependen-
cies by an acyclic and/or graph such as the one shown
in Figure 1. This structure is variously called a fault
tree or a series/parallel graph. Leaf nodes are system
components and the root represents the system. An
and node in the tree fails if all of its children fail; sim-
ilarly, an or node fails if any of its children do. Thus,
true denotes failure. Since the graph is acyclic and
interpreted as a boolean expression, it can always be
converted to an equivalent tree by replicating nodes
that have multiple parents.

The Φi nodes are circuit components and the βi

nodes are batteries in the fault tree shown by Figure 1.
The root fails when the services of any two of the three
Φi are not available and each Φi denies service if it
fails or both batteries that support it fail. The failure
condition, f , for the example system is

f = (Φ1 ∨ β1β2)(Φ2 ∨ β1β3)
∨ (Φ1 ∨ β1β2)(Φ3 ∨ β2β3) (1)

∨ (Φ2 ∨ β1β3)(Φ3 ∨ β2β3)

where juxtaposition means and (∧) in boolean expres-
sions. The symbols, Φi and βi, represent propositions
that components with the same name fail.

The third step of the reliability analysis begins with
a fault tree such as the one shown by the figure above.
The fault tree is converted to a boolean expression
(Eq. 1) then transformed into conjunctive normal form
and simplified by subsumption.1 The result of this
process applied to Eq. 1 is

f = Φ1Φ2 ∨ Φ1Φ3 ∨ Φ2Φ3 ∨ β1β3Φ1

∨ β2β3Φ1 ∨ β1β2Φ2 ∨ β2β3Φ2 (2)
∨ β1β2Φ3 ∨ β1β3Φ3 ∨ β1β2β3,

a form where each term (conjunction) is a critical set
of the system.

The final step of the reliability analysis computes
the probability of system failure in terms of the prob-
abilities of individual component failures. Two rea-
sonable assumptions are usually made to simplify and
speed up probability calculations. The first is that
the probabilities of component failures are marginally
independent of each other and the second is that the
probabilities are small. When these assumptions are
valid, the failure probability of a critical set is the
product of the failure probabilities of its elements and
the failure probability for the system can be accurately
approximated by the sum of the failure probabilities
of its critical sets. Thus,

p(f) ≈ p(Φ1)p(Φ2) + · · · + p(β1)p(β2)p(β3) (3)

is derived from Eq. 2 as a reasonable approximation
for the example.

3 Trouble in Paradise
Critical set enumeration and failure probability cal-

culation are straightforward though computationally
expensive procedures. Both are mechanical opera-
tions on the fault tree—the latter requires component
failure probabilities as well. However, preparing an
appropriate fault tree from a system specification is
difficult and the source of many mistakes. This step
requires deep knowledge of the inner workings of a sys-
tem and how its components depend on and support
each other. In fact, two systems with isomorphic com-
ponent connection graphs do not necessarily have the
same fault tree.

Another problem occurs when dependency loops
exist among components because the acyclic nature of
the fault tree prohibits a simple representation strat-
egy. Consider the following set of boolean equations
that are encountered in Section 5 for an example with

1Subsumption is a reduction that replaces the form “αβ∨α”
with the equivalent “α”, where α and β are arbitrary boolean
expressions.

429



dependency loops.

a = A ∨ bx b = B ∨ ac ∨ ay ∨ cy c = C ∨ bz
x = X y = Y z = Z

(4)

The literals A, B, C, X, Y , and Z represent failures
of components with the same names and the variables
a, b, c, x, y, and z, represents failure of the services
associated with them. The general solution to these
equations is

a = A ∨BX ∨ CXY ∨ (C ∨ Y ∨ Z)Xθ
b = B ∨AC ∨AY ∨ CY

∨ (AZ ∨ CX ∨XY ∨ Y Z ∨XZ)θ
c = C ∨BZ ∨AY Z ∨ (A ∨ Y ∨X)Zθ,

(5)

where θ is a free boolean parameter. Thus, the solu-
tion is a parameterized family and the critical-set list
cannot be formed until θ is specified. An additional
problem is that variable failure probabilities are not
uniquely determined either. Rewrite these equations
more abstractly as v = ξv ∨ µvθ, where v is either a,
b, or c, and it follows that

p(v) = p(ξv) + p(ξvµv|θ) · p(θ).

Clearly, p(v) cannot be calculated without p(θ). Fur-
ther, unless θ and the literals are marginally indepen-
dent, some conditional probabilities will be needed as
well. All that can be inferred at this point is that

p(ξv) ≤ p(v) ≤ p(ξv ∨ µv), (6)

a range that may be too large to be informative. The
left and right end points of this interval correspond,
respectively, to θ = false and θ = true.

Another problem with current practice is that a
separate fault tree must be generated for each subsys-
tem. The technology proposed in the following sec-
tions address the issues discussed here. The proposal
provides a representation—the functional dependency
graph—that is closer to the original system specifi-
cation, handles dependency loops, and combines the
analysis of a system with analyses of its subsystems.

4 Functional Dependency Graphs
Working system components provide functionalities

that are needed by other components and subsystems
to function properly. The dependencies are on compo-
nent functionalities, not the components per se. These
dependencies result from and are the bases of the sys-
tem architecture: they are the underlying reasons that
systems should work and they tell us how and why sys-
tems can fail, i.e., dependencies determine fault trees.

A functional dependency graph (FDG) is a data
structure that encodes dependency knowledge. An

6f

κ2

³³³³³³1φ1 6φ2 PPPPPPi φ3

Φ1 ∨ κ2 Φ2 ∨ κ2 Φ3 ∨ κ2

6b1³³³³³³1
PPPPPPi
b2³³³³³³1

PPPPPPi 6b3

β1 β2 β3

Figure 2: FDG for a redundant circuit.

FDG is a directed graph; its nodes represent func-
tionalities and its edges represent dependencies. The
functionality at an edge’s head depends on the one at
its tail. The name of the functionality represented by
a node labels all edges that originate at that node.

Figure 2 is a functional dependency graph. It de-
picts the same system as Figure 1. Each node is la-
beled with a boolean expression that describes how
that node depends on its inputs and the mechanisms
in the system. The κi symbols are shorthand for ex-
pressions that evaluate true when i or more arguments
(inputs to the node) are true. Thus, κ1 = x1 ∨ x2 and
κ2 = x1x2 for a node with inputs x1 and x2, while

κ1 = x1 ∨ x2 ∨ x3

κ2 = x1x2 ∨ x1x3 ∨ x2x3

κ3 = x1x2x3

for a node with inputs x1, x2, and x3.
In this example, the bi are three functionalities as-

sociated with providing electric power. In another
system, they might be lumped to provide a single
functionality but not here. Though these three may
be similar, they are not identical—usage distinguishes
them. The φi are the non-redundant computational
functionalities provided by the Φi, and f is the redun-
dant functionality that is this system’s design goal.

A boolean equation, representing the failure condi-
tion for a functionality, is associated with each node.
The equations for this example are

f = κ2(φ1, φ2, φ3)
φ1 = Φ1 ∨ κ2(b1, b2)
φ2 = Φ2 ∨ κ2(b1, b3)
φ3 = Φ3 ∨ κ2(b2, b3)
b1 = β1

b2 = β2

b3 = β3

430



and the solution for f is found by simple substitution.
It coincides with that displayed by Eqs. 1 and 2.

The FDG for a simple system is similar to a com-
pact version of its fault tree. However, two advantages
of the FDG are immediately apparent. The first and
most important is that the FDG is easier to generate
than a fault tree because it more closely corresponds
to the original design intent. In the example, the rea-
son for multiple copies of similar components is to in-
crease reliability via redundancy. This fact is clear
because the non-redundant capabilities (the φi) are la-
beled and distinguished from the more fault-tolerant
capability, f . Using an FDG should, because function-
alities and design intent are more explicit, decrease
mistakes in reliability analyses.

The second advantage is that fault conditions for
the φi and bi, considered as subsystems, are immedi-
ately available from the same representation. This is
not true of the example fault tree shown in Figure 1
since the functionalities are not identified.

A corollary to the above is that it should be easier
to incorporate design changes in a reliability analysis
when FDGs are used. Only that portion of an FDG
describing how a modified functionality is provided
needs to be changed. Further, those changes need only
be made once. More must be done when using a fault
tree because there is no clear demarcation between
service providers and service consumers. Using a fault
tree formalism, a change must be made to the fault
tree for each subsystem that uses the modified service.

A third advantage of FDGs for more complicated
systems is discussed in the next section. The case
where dependency cycles exist is considered and in-
corporated in the formalism.

5 Dependency Cycles
System functionalities are inherently co-dependent.

For example, power from an automobile engine is not
available without oil pressure, but oil pressure depends
on the oil pump which needs engine power to work.
Therefore, it is necessary and natural that an FDG
should permit dependency cycles.

Figure 3 is an example of an FDG for a system
with dependency cycles: X, Y , and Z are generators
and the associated functionalities, x, y, and z, are raw
power. A and C are regulators so the functionalities
a and c are smoothed power. The functionality a (re-
spectively c) is available when the regulator A (respec-
tively C), along with at least one input power source,
is available. The functionality b is mission power. It
depends on the correct functioning of combiner B and
the availability of two of its three input power sources
(at least one must be smoothed). The boolean failure

A ∨ κ2 B ∨ κ2

6b

C ∨ κ2

X Y Z

-
¾ -

¾

b b
a c

6 6 6x y z

Figure 3: An FDG with cycles.

conditions for the functionalities are given by Eq. 4
and the general solution to those equations is the fam-
ily, with free parameter θ, displayed by Eq. 5.

As in this example, the general solution to the
boolean equations associated with an FDG contain-
ing cycles may involve one or more free parameters.
The particular solutions are found by substituting ar-
bitrary boolean expressions for each. Thus, the FDG
does not uniquely identify critical sets or determine
failure probabilities. However, if we stipulate the
closed-world assumption that

A functional dependency graph explicitly en-
codes all relevant dependencies.

the problems of non-determinism can be eliminated.
Our stipulation would be violated if the expression

substituted for a free parameter contained literals or
variables. Therefore, the value assigned to a free pa-
rameter must be a constant, i.e., either true or false.
When all free parameters are simultaneously true or
simultaneously false, the solutions correspond, respec-
tively, to the maximum and minimum fixed points of
the original equations. The solution when the free pa-
rameters are true is the union of the failure modes of
all models consistent with the FDG, while the solution
when the free parameters are false is the intersection,
i.e., the latter is the set of failure modes that are struc-
turally implied by the FDG.

Critical sets and, hence, failure probabilities will be
completely determined by the FDG if we can agree on
a mechanical method to assign values, true or false, to
each free parameter. We propose that all assignments
be true. The disadvantage of this choice is that it gen-
erally requires more computational resources to find
the maximal solution than the minimal one. However,
there are several theoretical and practical advantages
that offset this fact.

Our experience indicates that it is easier to encode
a correct model when it is known that the semantics
are the maximal solution because the FDG more re-
sembles the original system architecture. Consider the
example shown in Figure 3 and the critical-set list for
b in Eq. 5 with θ = true. AZ is a critical set as it

431



should be. Only one power source, Y , supports b: Z
has failed and X is masked because A has failed. In
the minimal solution (θ = false), AZ is not a critical
set, and this is tantamount to assuming that power
from Y and from the path Y -B-C-B can support b
without X or Z. Clearly, this is not the design intent
of the example system.

A second advantage of the maximal solution is that
the associated model is better for diagnostic reasoning.
Typically, diagnostic plans use critical-set analyses to
determine test sequences. If the maximal solution is
used, the test plan considers critical sets that cause
system failures when dependency loops might not be
self-supporting. In the example system, AZ is a pos-
sible critical set because the B-C-B cycle, supported
by Y alone, is not considered a second source of useful
power distinct from Y .

The third advantage of the maximal solution is that
it leads to more realistic estimates of failure prob-
abilities. Note, the minimum and maximum solu-
tions provide, respectively, lower and upper bounds
on these probabilities (Eq. 6). The lower bound is
too optimistic—systems fail for more reasons than are
structurally implied. Control theory teaches us that
feedback loops can have more than one limit-cycle, a
quasi-stable state that can be entered from a given set
of initial conditions. A system or subsystem typically
fails when any but the intended limit-cycle is entered.
The maximal solution accounts for these extra possi-
bilities; the minimum solution does not.

Thus, the recommendation is to use the maximum
solution to model systems via the FDG formalism.
However, the analysis procedures discussed in the next
section can, generate either solution.

6 Analysis Procedures
This section briefly describes mechanical techniques

to do reliability analyses given an FDG and the com-
ponent failure probabilities. It is assumed that nega-
tion is not used in boolean expressions, a standard
assumption in the reliability field. (How can the cor-
rect operation of one part of a system depend on an-
other part failing?) However, de Kleer, et al [5] ar-
gue convincingly that negation makes diagnostic rea-
soning more accurate when explicit failure modes are
modeled. For example, the output of a two-inverter
pipe can consistently be correct if both inverters fail
to invert.

Figure 4 depicts the databases and computations
necessary to do a reliability analysis. The FDG and
the component failure probabilities (CFP) are the in-
puts. A structure equivalent to a fault tree (FT) is
generated for each functionality by a substitution pro-

²
±

¯
°FDG

²
±

¯
°FT

²
±

¯
°CS

²
±

¯
°CFP

²
±

¯
°FFP

- -

-s

sub ss

ΣΠ

Figure 4: Reliability analysis data flow.

cess (sub) and critical sets (CS) are found by subsump-
tion and simplification (ss). Finally, the functional
failure probabilities (FFP) are found by a calculation
(ΣΠ) suggested by Eq. 3. The remainder of this sec-
tion describes sub and ss in more detail.

The sub procedure uses substitution to make the
boolean equation for each functionality variable-free.
(Recall, a variable is a symbol that denotes a func-
tionality.) This procedure is demonstrated on the
equation-set (Eq. 4) for the example in Figure 3. To
remove variables, first substitute the definitions of x,
y, and z, respectively, into the equations for a, b, and
c. The result is

a = A ∨ bX b = B ∨ ac ∨ aY ∨ cY c = C ∨ bZ.

Next, substitute a into b to get

b = B ∨ (A ∨ bX)c ∨ (A ∨ bX)Y ∨ cY,

a self-referential definition—b is directly defined in
terms of itself. This form can be written more ab-
stractly as b = α ∨ βb, a form whose most general
solution is b = α ∨ βθ, where θ is a free parameter.

Proof: Any solution of b = α∨ βb must have
the form b = α∨βθ for some θ. Now let θ be
arbitrary and note that α∨β(α∨βθ) = α∨βθ;
thus, α ∨ βθ is a solution for every θ.

The maximal (minimal) solution is generated by re-
placing each θ with true (false) whenever necessary to
break self references. Thus, the maximal form for b at
this point is

b = B ∨ (A ∨X)c ∨ (A ∨X)Y ∨ cY.

Similarly, substituting c into b and choosing the max-
imal solution yields

b = B ∨ (A ∨X)(C ∨ Z) ∨ (A ∨X)Y ∨ (C ∨ Z)Y,

a result that is equivalent to a fault-tree representation
of the maximal solution for b. The expression for b is

432



now variable-free and can be substituted into a and c
to complete the sub procedure. To wit,

a = A ∨
(
B ∨ (A ∨X)(C ∨ Z)

∨ (A ∨X)Y ∨ (C ∨ Z)Y
)
X (7)

c = C ∨
(
B ∨ (A ∨X)(C ∨ Z)

∨ (A ∨X)Y ∨ (C ∨ Z)Y
)
Z.

It is worth noting that the result of sub is independent
of the order of substitutions as long as true (false) is
substituted at every opportunity to break self refer-
ences. This procedure is similar to the one described
by Dionne, et al [6] to handle cycles in terminological
definitions.

The next step of the reliability analysis is to gen-
erate critical sets from the variable-free expressions.
The ss procedure transforms the expressions to equiv-
alent ones in conjunctive normal form—a disjunction
of conjunctions—by simplification and subsumption.
The strategy is to multiply out complex conjuncts,
use associativity (replace α ∨ (β ∨ γ) with α ∨ β ∨ γ),
and do subsumption (replace α ∨ αβ with α) when-
ever possible. When no more of these operations can
be done, the expression is in the desired form. As an
example, consider Eq. 7. After multiplying and using
associativity, it is

a = A ∨BX ∨ACX ∨AXZ ∨ CX ∨XZ

∨AXY ∨XY ∨ CXY ∨XY Z,

and after subsumption it is,

a = A ∨BX ∨ CX ∨XZ ∨XY,

which agrees with Eq. 5 when θ = true.
The ss process is by far the most computationally

costly part of reliability analysis: since the number
of critical sets can grow exponentially in the size of
the fault tree, enumerating them is inherently expo-
nential in the worst case. Therefore, methods that
reduce the associated computational costs are vital.
We are currently investigating Trie structures (named
by Fredkin [7], analyzed by Knuth [8], and related to
the present application by de Kleer [4]) to reduce the
complexity of the subsumption task.

7 Current Status & Future Directions
The Northrop Automation Sciences Laboratory has

implemented the technology described above. One
version, written in C using X-windows, is in produc-
tion use on a variety of real-world systems. The users
of this system report favorably on the differential ca-
pabilities offered from past tools and approaches. In

particular, the analysts make fewer mistakes and they
find FDGs easier to generate and manipulate than
fault trees.

Several experimental versions are implemented on
Symbolics Lisp Machines. One experiment in particu-
lar is worth mentioning—the use of hashing to speed
up the generation of critical sets. When the ss proce-
dure is applied recursively to a part of the fault tree, a
hash table is used to determine if this calculation has
already been done. If so, the conjunctive normal form
equivalent is returned. If not, that form is calculated
and put in the table using the fault subtree as the hash
key. The sub process canonicalizes the boolean forms
that it produces to make this procedure more efficient.

Experience has shown that there is a modest speed
up when finding the critical sets for a single function-
ality. The major gain is when the technique is applied
to finding critical sets for several functionalities in the
same FDG. Since many functionality equations con-
tain the same subexpressions, the speed up is often an
order of magnitude or more, particularly for large sys-
tems. A future experiment is planned to compare the
speed up available from hashing with the one avail-
able from Trie structures and to see if there is a way
to combine the advantages of both.

Another possible avenue for further investigation is
suggested because functional dependency graphs are
similar to Bayesian networks [9] with boolean vari-
ables. The difference is that cycles are permitted in
FDGs but not in Bayesian networks since cycles would
compromise the semantics of independence assertions
with the latter. The issue is whether insights gained in
the work reported here can indicate methods that will
properly incorporate dependency cycles into a general
Bayesian network formalism.

Acknowledgements
The authors wish to thank Christine Bainbridge,

Ted Johnson, and Tim Verma for their timely and
convincing demonstrations of the value of fixed points
in a variety of endeavors.

References
[1] B. L. Amstadter. Reliability Mathematics. Mc-

Graw-Hill. 1971.

[2] R. E. Barlow, J. B. Fussell, and N. D. Singpurwalla
(eds). Reliability and Fault Tree Analysis. SIAM.
1975.

[3] J. A. Barnett and T. Verma. Functional block di-
agrams: logic and probability. The Northrop Cor-
poration. Palos Verdes Peninsula, CA. 1992.

433



[4] J. de Kleer. An improved incremental algorithm
for generating prime implicants. Proceedings of
the Tenth National Conference on Artificial Intel-
ligence. pp. 780–785. 1992.

[5] J. de Kleer, A. K. Mackworth, and B. Reiter.
Characterizing diagnoses. Proceedings of the Eight
National Conference on Artificial Intelligence. pp.
324–329. 1990.

[6] R. Dionne, E. Mays, and F. J. Oles. A Non-well-
founded approach to terminological cycles. Pro-
ceedings of the Tenth National Conference on Ar-
tificial Intelligence. pp. 761–766. 1992.

[7] E. Fredkin. Trie memory. Communications of the
Association for Computer Machinery 3. pp. 490–
500. 1960.

[8] D. E. Knuth. Sorting and Searching: The Art of
Computer Programming, Vol. 3. Addison Wesley.
1973.

[9] J. Pearl. Probabilistic Reasoning in IntelligentSys-
tems: Networks of Plausible Inference. Morgan
Kaufmann. 1988.

434


		2002-03-09T09:36:01-0800
	Culver City
	Jeffrey A. Barnett
	I am the author of this document




