
GARBAGE COLLECTION VERSUS SWAPPING∗

Jeffrey A. Barnett†

USC/Infromation Sciences Institute

August 25, 2015

1 Introduction

Relationships among dynamic memory management, swapping, and equip-
ment costs are investigated in this paper. Very primitive first-order models
are used and all results are in closed form. Therefore, the conclusions ap-
ply directly only to very simple-minded situations. However, the phenomena
addressed are important. It is suggested that an analysis of more realis-
tic systems employing more accurate models can be beneficial. Of course
simulation may then be necessary.

Section 2 introduces the models, their parameterization and justification,
and the simplifying assumptions that have been made. Section 3 investigates
an optimization from the viewpoint of an applications task. The optimiza-
tion is on program size to minimize throughput time and the constraints are
the penalties introduced by a garbage collector and a swapping mechanism.
Section 4 looks at another optimization from the viewpoint of a computation
center manager who wishes to provide the best possible services given a fixed
equipment budget. The degree of freedom in his choices is the amount to
invest in the CPU versus the amount to invest in the swapping device. Sec-
tion 5 treats the problem of installation optimization where the users control
the sizes of their programs and the computation center manager selects the
configuration mix. This is the problem of doing the two above optimizations
together. It is shown that a stable policy exists, given the simplified models,
and that everybody benefits.

∗Originally appeared in Operating Systems Review, 13 (3), 12–17, 1979.
†Current email: jbb@notatt.com

1



Garbage Collection Versus Swapping 2

The major results are

• Small programs complete execution more quickly than large programs
even though they garbage collect more frequently.

• The optimal investment policy for a CPU and swapping device is in-
dependent of the cost-effectiveness of the CPU but is sensitive to the
cost-effectiveness of the swapping device.

• Much can be gained through cooperation of the users and the compu-
tation center manager because they share a common objective—better
resource utilization.

2 System Models

The models defined below represent first-order approximations of the system
components they describe. Because of simplifying assumptions inherent in
such approximations, results are derivable in closed form. It is acknowledged
that such results cannot be directly generalized or applied. However, they
can be used to indicate a system’s gross performance characteristics. The
system components modeled below are

• Dynamic memory management — garbage collector overhead as a func-
tion of size of the program’s memory pool.

• User program — total computation time of the program including
garbage collections as a function of its memory utilization.

• Operating system — a simplified time-slicing round robin system and
its resource allocation policy to programs as a function of their memory
requirements.

• Hardware — performance of the CPU and the swapping device as a
function of their respective costs.

As the component models are introduced, an attempt is made to justify
the assumptions set forth as reasonable approximations to gross behavior
characteristics.

Operating Systems Review Volume 13, Number 3, 12–17, 1979.



Garbage Collection Versus Swapping 3

2.1 Garbage Collector Timing

A dynamic memory management scheme is a method of allocating cells from
a memory pool to various tasks as the need arises. If the total number of
cells allocated exceeds the pool size, then some method must be employed
to return to the pool for reallocation those cells no longer needed. There
are two general ways of returning cells to the pool: (1) erasure schemes and
(2) garbage collector schemes. In an erasure scheme, the program itself is
responsible for returning cells to the availability pool when they are no longer
needed and can, therefore, be reallocated. In a garbage collector scheme, cells
are allocated until the pool is exhausted. When the pool is exhausted, the
garbage collector algorithmically and automatically determines, by examin-
ing the program’s memory, which cells are available for reallocation because
the program can no longer reference them. Obviously, a garbage collector
scheme is more flexible and easy to use than an erasure scheme. Experi-
ence has also shown that there is little difference in overhead between the
two approaches. Therefore, it is assumed here that the dynamic memory
management scheme employed is a garbage collector.

The runtime overhead exacted by a garbage collector is a function of the
number of cells in use and the total size of the memory pool. Experiments by
this author and experiments and analysis by others have established that the
time required to perform a single garbage collection, γ1, is a linear function
of the number of cells in use, mu, and the number of cells reclaimed, mr.
(Note, the total pool size is mu +mr.) The equation for this is

γ1 = αmu + βmr + γi (1)

where γi is the time needed to initialize the garbage collector, and α and β
are respectively the average incremental times needed to process one more
cell of used memory and one more cell of reclaimed memory. The linearity
result assumes the mix of “shape,” “connectivity,” and “blocking” (i.e., the
statistical measures of intercell pointer references) of the used structure is
relatively constant over different instantiations of the garbage collector.

The analysis and experimentation leading to equation 1 have generally
shown α to be significantly larger than β by a factor of ten or so. This
is explained by the fact that cells in use must be marked and/or copied,
relatively expensive operations, and those reclaimed need not be.

Operating Systems Review Volume 13, Number 3, 12–17, 1979.



Garbage Collection Versus Swapping 4

2.2 Program Timing

The model of the program runtime is simplified here by making the following
assumptions:

• The total size of the memory pool is fixed.

• The total demand for cell allocation is many times larger than the size
of the memory pool. Therefore, there will be many garbage collections.

• Cells are taken from the memory pool at a nearly constant rate.

• Cells become free at the same rate.

Given these assumptions, it is obvious that the number of cells in use, mu, and
the number of cells reclaimed by the garbage collector, mr, can be treated
as constants, i.e., their values do not vary significantly from one garbage
collection to the next. The below analysis also ignores initial effects—those
occurring before the first garbage collection. This is safe because the total
computation is assumed to be large.

The total size, m, of the program is defined by

m = mu +mr +mi (2)

where mi is the number of cells in the program that are not part of the
memory pool and therefore not relevant to the operation time of the garbage
collector.

Since cells are allocated at a nearly constant rate, a CONS (the cell
allocation function) clock can be substituted for the CPU timer. Let λ be
the average time between the start of one CONS call and the start of another,
not including garbage collection overhead. Them, if a computation needs W
cell allocations, the program runtime exclusive of garbage collection is λW .
Also, the total number of garbage collections, ngc, and the total time required
in the garbage collector, γ, for the computation are ngc = W/mr and

γ = ngcγ1 = W (αmu + βmr + γi)/mr (3)

Therefore, the total runtime, T , for the calculation including garbage collec-
tion is

T = λW + γ = W (αmu + (β + λ)mr + γi)/mr (4)

and T decreases with increasing mr as should be expected.

Operating Systems Review Volume 13, Number 3, 12–17, 1979.



Garbage Collection Versus Swapping 5

2.3 Operating System Policy

The modeled operating system employs a simple round-robin scheduler. A
program needing CPU service is placed in the run queue. When the program
reaches the top of the queue, it is given one quantum of service and if it
has not completed its calculation, the program is reinserted at the bottom
of the queue. The length of a quantum is q time units and includes the time
necessary to swap the program into and out of high-speed memory. It is
assumed that q is a task-independent system constant.

Let s be the average (incremental) time needed to transfer one cell be-
tween the high-speed memory and the swapping device—delay times for seek,
etc., are averaged into s—then the time needed to swap a program of size m
into high-speed memory and back again is 2sm. Further, the execution time
per quantum available to the program is q − 2sm. Therefore, if a program
needs T time units to complete its calculation, then the necessary number of
quanta, nq, to complete the job is given by

nq = T/(q − 2sm) (5)

It is further assumed that the user is charged a fixed amount per quantum
of service; that is, the full penalty for large programs is exacted by lack of
service and the resulting increased charges because more quanta are used.
Note, equation 5 shows increasing nq for increasing m.

The assumptions made here about scheduling and swapping are extremely
old-fashioned. No provision is made for more modern approaches such as mul-
tiprogramming, multiprocessing, paging, or multiqueue scheduling. Elabora-
tion of the model to cover such cases would likely rule out the possibility of
closed form, easily interpreted results. To be tractable to simulation, another
equally rigid model would need to be substituted, restricting the results to
one particular set of assumptions in any event. Therefore, a choice has been
made to use the simplest set of reasonable assumptions exhibiting the ex-
pected general behavior pattern—namely that responsiveness decreases and
cost increases as programs get larger.

2.4 Hardware Performance

The only equipment considered here is the CPU and the swapping device.
High-speed memory is not discussed because the assumptions made in the

Operating Systems Review Volume 13, Number 3, 12–17, 1979.



Garbage Collection Versus Swapping 6

previous subsection about the operating system do not allow sufficient free-
dom to explore the possible savings and costs for a varying core size. The
simplifying assumptions made about hardware performance are

• The transfer rate of the swapping device is directly proportional to its
cost.

• The CPU’s execution time of an average or typical instruction obeys
Grosch’s law.

The assumption about swap performance is very reasonable if the swapping
device is disk because performance enhancement is normally obtained by
buying more (not faster) disks, and the improvement is nearly linear because
proportionally more transfers and seeks can overlap. Let ts be the average
time necessary to transfer a cell from or to a device costing one unit and
let cs be the actual cost of the swapping device, then by the proportionality
assumption, the average time required to transfer one cell to or from the
swapping device is

s = ts/cs (6)

The derivations below assume that the quantum size, q, is held constant.
Another plausible assumption is that q is proportional to s. However, this
would not affect the fraction of the quantum available for program execution.
Given a particular s and q, the available fraction is (q − 2sm)/q. If both s
and q are increased by the same factor, say k, then the available time is
(kq − 2ksm)/(kq). But these two quantities are identical. Thus, the only
effect of changing the quantum size proportionally to the swap time is to run
through the queue at a different rate. If k < 1, the system is more responsive
to short calculations. The opposite effect occurs if k > 1. In each case, the
total computational service available to the users is the same.

Assume that te is the average execution time for an instruction on a CPU
costing one unit and that a CPU costing ce units is purchased, then Grosch’s
law states that average execution time on this CPU is te/c

z
e where z is an

empirically determined constant with wide applicability. However, te may
vary substantially from one family of computers (e,g., IBM 370s) to another.
In prior sections, several timing constants have been defined, i.e., λ, γi, α,
and β. Underlying each is an associated instruction count. For example, if
Iλ is the average number of instructions executed from the initiation of one

Operating Systems Review Volume 13, Number 3, 12–17, 1979.



Garbage Collection Versus Swapping 7

CONS call to another, then

λ = Iλte/c
z
e (7)

An equation similar to this one can be written for each timing constant.

3 A User Optimization

Given the above models, an optimal policy for the user is to control the size
of his program such that the necessary number of quanta, nq, to complete
the calculation is a minimum. This both maximizes the rate at which he
obtains service and minimizes the cost. If a program is made smaller (i.e.,
mr decreases), then a larger fraction of each quantum is available for compu-
tation. However, the garbage collector will run more often and the program
will need more total CPU time. The opposite effects occur if the program is
made larger. Thus, there is a tradeoff.

The minimum permissible program size, mmin, is mu + mi. If the pro-
gram is this size, then mr = 0 (equation 2) and will spend infinite time in the
garbage collector (equation 3), thus never reaching completion (equation 4).
On the other hand, the maximum permissible program size, mmax is q/(2s).
If the program is this size, the calculation will take an infinite number of
quanta to complete because each quantum is dedicated in toto to swapping
(equation 5). Therefore, the permissible range of program sizes for terminat-
ing calculations is mrange = mmax −mmin and hence, 0 < mr < mrange.

The optimal program size is derived by determining the optimal amount
of free memory, Mr—this is the only control left to the user by the model.
This is done by substituting equations 2 and 4 into equation 5, differentiating
with respect to mr and setting the result equal to zero. Also, the definition
of mrange has been substituted.

(β + λ)m2
r/cgc + 2mr −mrange = 0 (8)

where cgc = αmu+γi, the per garbage collection overhead that is independent
of the value of mr.

The solution of equation 8 is mr = cgc((1+mrange(β+λ)/cgc)
1/2−1)/(β+

λ). The other root of the quadratic is discarded because Mr > 0. Therefore,
the optimal program size, M , is Mr +mu +mi = Mr +mmin

Operating Systems Review Volume 13, Number 3, 12–17, 1979.



Garbage Collection Versus Swapping 8

Let f = Mr/mrange, i.e., f is the fraction of the possible size range used
when m = M , the optimal size. Substituting the definition of f into equa-
tion 8 gives 1− 2f = f(β + λ)Mr/cgc. But all terms on the right-hand side
are positive. Therefore, 1− 2f > 0, or more to the point, 0.5 > f .

This result is particularly interesting since it disputes the oft-heard claim
that programs run faster if given a larger workspace. The claim quickly
becomes false because swapping imposes a larger penalty than the garbage
collector.

4 A Configuration Optimization

From the viewpoint of the computer center manager, an important problem
is balancing the capabilities of the swapping device and the CPU so that
user’s programs complete their calculations in minimum time, hence, so that
the computer center can support the maximum number of users. The method
of achieving the optimal balance is to split a fixed pot of money, C, between
the purchase of the two devices. The optimal policy derived below assumes
that other funds, not part of C, are spent in a fixed way on the rest of the
configuration. The amount spent on the CPU is ce and the amount spent on
the swapping device is cs Therefore, C = ce + cs.

Assume that a program performs a calculation that requires the execution
of I instructions. Then the amount of CPU time necessary, by analogy to
equation 7, is Ite/c

z
e. Further, the total fraction of each quantum available

for calculation is (q− 2sm)/q = (q− 2tsm/cs)/q = (qcs− 2tsm)/(csq), where
m is the program size and equation 6 has been substituted. Therefore, the
total system time used by the program (CPU plus swap), y, is the total
CPU time divided by the fraction of time available for computation. Thus,
y = (Ite/c

z
e)/((qcs − 2tsm)/(csq)) = Itecsq/(c

z
e(qcs − 2tsm)). Substituting

ce = C−cs. gives y = Itecsq/((C−cs)z(qcs−2tsm)). The optimal expenditure
on the swapping device, Cs, is determined by finding a cs such that dy/dcs =
0. After differentiating and some algebra, it follows that

Cs = (t0(z − 1) + (t20(z − 1)2 + 4t0zqC)1/2)/(2zq) (9)

Ce = C − Cs

where t0 = 2tsm, the in-plus-out swap time on a device costing one unit, and
Ce is the optimal expenditure on the CPU. Other roots of the differential

Operating Systems Review Volume 13, Number 3, 12–17, 1979.



Garbage Collection Versus Swapping 9

equation are not relevant because Cs > 0. If Grosch’s constant, z, is one,
then the result has a more appealing form.

Cs = (t0C/q)
1/2 = (2tsmC/q)

1/2

Cs/C = (ts/Cs)(2m/q) = 2sm/q

because s = ts/cs—see equation 6. Since 2sm/q is the fraction of the quan-
tum spent swapping, the optimal policy states (for z = 1) that the fraction
of the total expenditure invested in the swapping device (Cs/C) should equal
the fraction of the total system time spent swapping (2sm/q).

It is important to note that the optimal expenditure policy (equation 9)
does not depend on te, the cost effectiveness of the CPUs in the computer
line, but does depend on ts, the cost effectiveness of the swapping device. A
possible interpretation of the result is that the optimal policy dictates pur-
chasing the right amount of swapping capability first and then using whatever
funds are left over for CPU purchase.

The above calculations have assumed all programs are the same size, m
cells, and all have the same computational needs, I instruction executions.
This is of course unrealistic. However, if m and I are selected from inde-
pendent non-point distributions, it would still follow that Ce and Cs do not
depend on te.

5 An Installation-Wide Optimization

The separate policies developed for a computer center and its users share a
common objective—minimize the amount of resources necessary to complete
a job. The computer center manager does his optimization by observing the
size of the jobs currently using the system and, over time, he adjusts the
configuration. The users, on the other hand, quickly observe configuration
changes and adjust the sizes of their programs to optimize system behavior
on their own behalf.

In theory, this improvement cycle could go on indefinitely with each side
looking out only for its own self interests. It is possible that this behavior is
cyclic and does not converge in a useful direction. Fortunately, each of the
players’ selfish activities benefits all concerned because each change reduces
the amount of resources necessary to complete a job. Also, there is obviously
a lower bound on the amount of resources necessary so the behavior must
converge because a monotonic non-decreasing series with a lower bound is

Operating Systems Review Volume 13, Number 3, 12–17, 1979.



Garbage Collection Versus Swapping 10

guaranteed to have a limit. The limit can be found and the optimal values of
m, ce, and cs can be determined by simultaneously solving equations 8 and 9
or the analogous equations for a different set of models.

The appropriate time to perform this combined analysis is when the in-
stallation is preparing to install a new system or modify an existing system.
The computer center manager should query the members of the user com-
munity about the projected complexity of their programs, and cooperatively
they can arrive at an estimate of the joint optimal policy. Such forethought
and analysis is sure to be well rewarded, particularly at installations running
programs with large dynamic memory demands such as LISP systems.

Another topic not covered above is control of the quantum size q. If con-
trol is left to the computer center manager, its value will be set large enough
so that any program can complete its calculation in a single quantum. Thus,
there is exactly one swap in and, if necessary, one swap out per job rather
than a fixed fraction of the resources being consumed for swapping. The view
taken here is that q is a fixed constant representing the responsiveness of the
system to short calculations, i.e., if there are u users in the run queue, then
a calculation is guaranteed a shot at the CPU in time no longer than uq.

Operating Systems Review Volume 13, Number 3, 12–17, 1979.


